
International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     605 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

Optimization & Evaluation of Data Center 
Network 

by 
Syed Ahmed Raza 

saraza.z@gmail.com 
 
 
Abstract 
 
In recent years, technology is changing very 
rapidly and IT and Telecom infrastructure is 
expanding day by day. Especially With the 
emergence of cloud computing many business 
enterprises migrate their computing needs onto the 
cloud which results in enormous increase in the 
quantity of servers installed and the number of 
virtual machines running on them hence results in 
an increase in inter-server data traffic and an 
increase in bandwidth requirement for data center 
communication Network (DCCN). On the other 
hand High bandwidth, low latency and high 
availability requirements for real-time applications 
is enforcing Data networks to adopt the new 
concepts like Software Defined Networking 
(SDN), different network virtualization techniques 
and to optimize the network architecture (by 
modifying network topology & managing traffic 
flow through different techniques) which can 
handle & fulfill the future requirements. 
 
Currently in traditional data centers, three tiers 
architecture is deployed which is based on 
Traditional Ethernet/fabric switches. The main 
drawbacks of this architecture from future point of 
view are network scalability, flexibility, latency, 
cabling, current management, power consumption 
and its control issues which are almost static up to 
certain extent. This research paper presents a flat 
novel data center Communication network 
(DCCN) architecture named as HFPFMAOS 
(Hybrid Flow based packet filtering, Forwarding 
and MEMS based all optical switching). This 
solution optimize the data center Communication 
network architecture in such a way that most of its 
issues or challenges is resolved up to certain extent 
in less CAPEX (capital expenditure) with little 
modification keeping most of its current network 
infrastructure. In HFPFMAOS OpenFlow (OF) 
enabled switches is deployed as TOR switches at 
Access layer to perform Flow based packet 

filtering and Forwarding and at aggregation layer 
along with traditional Switches, MEMS based all 
Optical Switching (MAOS) is deployed to provides 
highly scalable and dynamic data paths for 
switching of large Data traffic (Elephant Traffic) to 
control latency and congestion. While for the 
management and control of OpenFlow (OF) 
switches & MAOS Plane SDN controller is 
deployed. Deployment of SDN Controller and 
OpenFlow (OF) Switches decouples data 
forwarding plane from the control plane and 
provides us centralized intelligence of whole 
network that is helpful in better traffic  
 
management, minimizing overheads, fastening 
updates and quick troubleshooting that reduces 
fault handling time in data center Communication 
network (DCCN).  
 
Keywords 
 
Data center communication Network (DCCN), 
HFPF, AOS (Hybrid Flow based packet filtering, 
Forwarding and MEMS based all optical 
switching), Software defined Networking (SDN), 
MEMS (Micro Electromechanical Switching), 
OpenFlow (OF). 
 
Introduction 
 
1.1 Background 
 
A data center is a specialized facility which is used 
to premises different resources like servers, data 
storage systems and Telecommunication & 
networking systems to handle its IT needs. From 
the past few years with the rapid growth in 
information technology and internet usage, data 
center is playing a vital role in IT & data networks. 
Moreover with the advent of cloud computing, 
server virtualization, social media & mobile data, 
data center network is expanding exponentially in 
terms of no of server’s deployment, storage and 

IJSER

http://www.ijser.org/
mailto:saraza.z@gmail.com


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     606 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

intercommunicating network infrastructure. The 
main components of Data center IT network are (i) 
DCCN (Data center communication network) to 
handle different types of communication traffic (ii) 
HPCN (High Performance computing network) 
that includes servers which can be rack mount or 
chassis based (iii) SAN (Storage Area Network). 
Being backbone of data center, DCCN should have 
higher throughput, fault tolerance, energy 
efficiency and scalability, to accommodate 
increasing bandwidth needs. Traffic flowing 
through DCCN can broadly classified into three 
types; 
 
 

• Traffic flows that stays within the data 
center. 

• Traffic flows that is between data centers 
(i.e. from one data center to another data 
center). 

• Traffic flows that is b/w data center and 
the end user via IP WAN or Internet. 

 
According to cisco “Global cloud index forecast” 
[1] the total amount of traffic crossing the internet 
in 2016 will reach to 1.3ZB (Zeta Byte)/year and 
by 2019 it will reach to 2.0 ZB[2] while data center 
IP traffic grows approx. three times  and reaches to 
approx. a total of 5.6ZB/year in 2016 and 10.4 
ZB/year by 2019 which corresponds to a 
CAGR(compound annual growth rate) of 25% 
from 2014 to 2019.as shown in fig.1.1[2] The main 
component of this growth is cloud computing 
which is expected to be four-fifth of data center 
traffic by 2019[2]. 

 
 

Fig 1.1: Global Data Center Traffic, 2014–2019 [2] 
 

By this forecast 17.8% traffic flows till end user (in 
terms of web browsing, video streaming mobile 
data, VOD, email etc.) and only 6.8% traffic is 
from one data center to another data center (in 
terms of contents replication, exchanging database, 
data moving between clouds etc.) while 75.4% of 

the total traffic resides inside the data center b/w 
clusters also known as East-West traffic (in terms 
of storage, VM motion, database backup, 
authentication and development data) that which is 
presented in Fig. 1.2 as;    

 
 

Fig 1.2: Global data centers traffic by destination [2]  
 

From the above figure it is clear that majority of 
traffic exists within data center and out of which 
most of the traffic traverse between Edge Switches 
and servers. Traffic forecast between different 
layers of data center communication network is as 
shown in fig 1.3.  
 

 
Fig 1.3 Traffic Forecast between different layers of DCCN [2] 

 
1.2 Problem Statement 
 
Globally in modern data center communication 
networks (DCCN), big data (Particle Accelerator, 
Airplane, Train, Hospitals, Oil Wells etc.)[2] along 
with cloud applications, server virtualization, video 
& mobile data traffic is growing very rapidly day 
by day. This growth requires unified network 
architecture (topology) and networking equipment 
which can handle & fulfill the performance 
requirements of multiple types of traffic with 
optimum mix of low cost, low latency, energy-
efficiency& high performance. The issues or 
challenges which the DCCN will have to face are 
as; 
  
• Limited Capacity between servers& high 

Oversubscription ratio as traffic move up in 
hierarchy through the layers of switches  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     607 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

• Congestion and high network latency issues 
badly effect delay sensitive applications and 
degrades overall network performance.  

• Management of internal data-center traffic 
(i.e. east-west traffic between racks) which 
is almost 75% of the total traffic. 

• Support to a variety of traffic patterns, 
which includes short persistent "mouse" 
flows and long persistent, high bandwidth 
"elephant" flows.  

• Scalability, Agility and Efficient resource 
utilization issues as network grow. 

• Management, fault handling and 
troubleshooting in the network.  
 
 

1.3 Research Contribution 
 
This research work propose a solution named 
HFPFMAOS (Hybrid Flow based packet filtering, 
Forwarding and MEMS based all optical 
switching) which optimizes DCCN architecture for 
catering its challenges up to certain extent with 
low capital expenditure. This solution will not only 
helpful in improving scalability issues, traffic 
management, Congestion control & utilization of 
available resources but also helpful in reducing 
network latency, power consumption and saving 
CAPEX. 
 
HFPFMOAS employs OpenFlow(OF) at access 
switches which is performing Flow based packet 
filtering, Forwarding and MEMS based all optical 
Switching at aggregation layer provides switching 
of large persistent, high bandwidth data flow 
(elephant flow) along with traditional packet 
switching which is used for mouse flows. This will 
enable us to avoid normal data traffic route for 
specific flows and create dynamically high band 
width data paths directly between any OF (TOR) 
switches through MEMS switching plane for 
switching of that specific flows of elephant traffic, 
which results in reduced network latency due to all 
optical (OOO) switching and less chances of 
bandwidth bottlenecks. For centralized control, 
management and intelligence it is connected to 
SDN controller that keeps monitoring whole 
network all the time and maintains a centralized 
Topology database which helps us to dynamically 
create High bandwidth data path whenever and 
wherever it is required between OF Switches. 
Moreover it will reduce management overhead 

bytes on the network and helps us in quick fault 
diagnosis and its rectification.  
 
For management, centralized control and 
performing different tasks we can install wireless 
network card in servers that provides a direct 
channel for communication between Server and 
SDN controller. This will be helpful in congestion 
notification ,link utilization updates, increased 
latency and scheduling different tasks like database 
backup, VM migrations from one server to other 
server, and creation of high bandwidth data paths 
through MEMS plane dynamically. 
 
1.4 Research Methodology 
 
Install Mininet in one virtual machine and Open 
DayLight controller in another virtual machine 
using Oracle VM VirtualBox manager. Build a 
reference data center network topology by 
deploying traditional switches in Mininet using 
MiniEdit, run the topology and generate multiple 
data traffic streams between different hosts using 
IPERF and check the network delay and its 
performance by observing their latency and packet 
loss before and after congestion. In second step 
deploy the OpenFlow (OF) switches in Access 
layer as TOR switches replacing traditional 
switches and connect them with remote SDN Open 
DayLight controller running in other virtual 
machine, capture the OF messages through Wire 
shark to verify the proper connectivity and 
functioning of OpenFlow protocol. Then generate 
the traffic with in the network between different 
Hosts using IPERF and check the network 
performance and delay. In last step MEMS switch 
is deployed at aggregation level along with 
traditional switches and connect this with 
OpenFlow (OF) Switches deployed at Access layer 
& ODL controller. Then again generated the traffic 
between different hosts and observe the latency and 
packet loss of  multiple flows before eighty percent 
utilization of uplinks, after that add flow entries in 
the OF switches and directed the next flow through 
high bandwidth MEMS switch. Observe the 
network performance (i.e. latency, percentage of 
packet loss, data transfer rate etc.) and compare the 
results.  
 
1.5 Software Used 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     608 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

Oracle VM VirtualBox manager, Mininet, 
Miniedit, ODL controller, Xming, Putty, 
Wireshark. 

 
Data Center 
 
2.1 Introduction 
 
Typically a data center is a special facility 
conceived to house, manage, and support 
computing resources that are considered critical for 
one or more organizations.[3] A data center is a 
complex structure comprising of special building 
infrastructures, power backup arrangements, 
cooling systems, equipment cabinets, servers, main 
frames & High performance Computing(HPC) 
network to handle different types of traffic of 
communication, storage Area network (SAN), 
LAN & communication infrastructure with 
multiple networks (DCCN), structured cabling, 
application software, monitoring center and 
physical security systems. The illustration of a 
basic Data center is shown in fig 2.1 [3] 
 

 
Fig. 2.1 Basic Data Center Diagram 

 
Above diagram just show the small basic Data 
Center deployed in single room where as a real 
Modular Data center can spread over vast area and 
occupies several rooms spread over several stories 
or building, accommodating different 
infrastructures depending upon its criticality and its 
percentage of availability (i.e. Data center Tier). 
 
2.2 Evolution of Data Center 
 
The initial phase (Phase 1.0) of data center starts 
back in 1950’s consisting of computer rooms 
containing main frame systems CPU and peripheral 
devices like storage, terminal and printers etc. 

These are centralized systems based on monolithic 
software architecture allowing a limited control 
over IT infrastructure and high resource utilization. 
In 1980’s data center phase 2.0 starts with the 
popularity of client-server application model. In 
this time trends changes and servers takes the place 
of main frame computers which are comparatively 
small and can be accessed through applications 
installed on client PC’s. In this phase Server which 
performs specific function is usually deployed near 
the client instead of Main IT infrastructure as to 
escape from high bandwidth cost. In 1990’s when 
internet took the boom and web based applications 
utilization increases, this enforces that servers 
should be deployed centrally in a properly designed 
data centers. So in the era of 1990’s the data center 
that originates from main frame computer room has 
gain importance. Data Center Evolution timeline is 
shown in fig 2.2 [3] as; 

 

 
Fig. 2.2 Data Center Evolution Phases 

 
Data center phase 3.0 starts around 2000, and as in 
this era technology changed very rapidly resulting 
in datacenter space, power and IT network start 
approaching to saturation so for expansion or to 
deploy new facilities require expansive budget. 
During such period Cisco IT study 2005 pointed 
out DC networks and servers were not fully 
utilized and on average only used at 20% of their 
capacity. The root cause of this situation were 
application silos with Discrete set of servers, 
network & storage resources. Later on various 
projects on network consolidation is done that offer 
new features, improves resource utilization, 
reduces no of network elements, processes and 
increase operational efficiency. Later on various 
virtualization technologies were introduced that 
provides many benefits like (i) consolidated 
structure in an isolated environment (ii) 
Aggregation of multiple resources into one shared 
resources (iii) simple operation procedures etc. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     609 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Data center network infrastructures are extremely 
interdependent of each other like (i) No of 
server/Rack depends on the Power distribution 
design (ii) Transport network depends on the No of 
installed servers in each rack . 
  
2.3 Types of Data Centers 
 
There are two main types of data centers [4][5] 
 

• Private Data centers. 
• Cloud Data centers. 

 
 
 
 

2.3.1 Private Data Centers 
 
Private data center usually refers to on premises 
hardware that provides computing services and 
stores data within an organization local network 
administrated by its IT department. Such kind of 
data centers is usually owned and operated by 
small private/public companies, government 
agencies and large companies providing 
technology products and services like Intel, 
Google, Microsoft, NASA etc.  
 
2.3.2 Cloud Data Centers 
 
Cloud data centers are also called Co-
location/Managed Services provider. These are the 
data centers that is established and maintained to 
provide infrastructure and services to the third 
parties. It usually refers to off-premises computing 
that stores data on the internet and all its services is 
outsourced to third party cloud provider, who often 
have multiple data centers in several geographical 
locations for data protection, redundancy and high 
availability and is responsible for all its up 
gradation and maintenance. Main factors that 
forces companies to use cloud computing or built 
its own data centers are; 

• Business needs. 
• Data security. 
• Equipment or infrastructure cost. 

 
Building own data center is suitable for companies 
having enormous work load and running multiple 
types of application or offering multiple different 
types of services, as it has limited capacity and 
workload and have limited scalability. Whereas 

cloud computing is cost effective and offers more 
scalability but the subscriber has very less control 
and data security & also infrastructure is shared as 
well among multiple users. 
 
2.4 Attributes of Data Center Communication 
Network (DCCN) 
 
The main objective of DCCN is to provide data 
services and to transport the server’s data to the 
clients or to others servers. Now a day from 
reliability, growth and efficiency point of view 
Data center communication network must possess 
these attributes  
  

• Availability: network failure ability to 
quickly recover from them and mask their 
effects to the end user and connected 
devices. 

• Scalability: Ease in Expansion as the 
network grows. 

• Flexibility: Support design and 
deployment changes without adverse 
outcomes. 

• Efficiency: Capable to fully utilize its 
available resources. 

• Predictability: shows expected behavior 
during a fault and after its recovery. 

 
Due to its layered architecture, high speed, low 
cost, simplicity, addressing flexibility, and 
extensibility, for data links Ethernet is the most 
common and popular protocol of DCCN and its 
interface range varies from 10Mbps to 100Gbps. 
However different limitations spurred to develop 
and adopt new virtualization technologies and to 
optimize data center network by deploying new 
networking techniques like MEMS all optical 
switching along with traditional packet switching 
as the traffic through DCCN grows. 
 
2.5 Data Center Tiers 
 
Tier is a standardized method which is used to 
define the percentage of availability or the uptime 
of a data center. Tier of a data center ranges from 1 
to 4 and is useful for measuring. 
 
a) Performance of a Data center b) Capital 

Expenditure (CAPEX) c) Return on 
Investment (ROI) Tier 1 is the simplest data 
Centre used by small business or shops. Tier 4 
data center is very less prone to failure and is 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     610 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

considered as most robust. It is designed in a 
way that it’s all subsystems have full 
redundancy (i.e. server & network links, 
storage, power, cooling etc.) and every 
section have different security zones which is 
controlled by different methods like biometric 
access control. Data center Tiers from 1 to 4 
are as [6] [7]; 
 
• Tier 1 = Guarantee 99.671% availability 

& components like (uplink and servers) 
have no redundancy. 

• Tier 2 = Guarantee 99.749% availability 
& components like (uplink and servers) 
have redundancy i.e. Tier 1 + redundancy. 

• Tier 3 = Guarantee 99.982% availability 
& have dual powered equipment’s, 
multiple uplinks. 

• Tier 4 = Guarantee 99.995% availability 
& have dual powered equipment’s. Also 
all components like uplinks, storage, 
servers, HVAC systems, and chillers etc. 
are fully fault-tolerant. 
 

 
Fig. 2.3 Data Center Tiers 

 
2.6 Design Factors for Data Center Network 
 
While designing & deploying DCCN architecture 
we must have to consider following parameters [3]. 
 

• Failure Impact & Application 
Resilience: A failure in DCCN will affect 
all local and remote users to access their 
applications. In order to avoid traffic 
interruption (black holes) server-
redundant interfaces should be connected 
to different access switches and network 
must have to capability to recover from 
any connection failure. 

• Server & Host connectivity: Servers 
must be connected via redundant Ethernet 
connections. 

• Traffic Direction: In DCCN most of the 
traffic lies within the data center i.e. b/w 
servers.  

• Agility: It defines the ability that any 
service or application can be assigned to 
any server at any time as per requirement 
with in the data center network keeping 
proper performance Isolation and security 
between different applications.     

• Growth Rate: It shows the increase in No 
of servers, switches and switch ports etc. 
with increase in customers or their data 
traffic, in order to avoid any congestion or 
bottleneck in the network topology.   

• Application Bandwidth Demand & 
Oversubscription Ratio: These two 
aspects are very important and interrelate 
with each other while designing DCCN. 
Application bandwidth demand tells us 
that every application should be placed in 
such a way that proper resources can be 
allocated to it according to its bandwidth 
needs and oversubscription tells us No of 
outgoing ports or switch modules 
allocated for the specific number of hosts 
or Servers traffic etc. Oversubscription in 
an environment where multiple elements 
sharing a common resource and is defined 
as the ratio of assigned resources to each 
consumer to the maximum utilization by 
each consumer. In DCN it refers to 
amount of bandwidth that switches can 
efficiently offer to downstream devices at 
each layer e.g. if an access layer switch 
have 32 10Gig server connecting ports 
and 8 10Gig uplink ports then it has 
oversubscription ratio of 4:1 for servers 
upstream traffic. So through detailed 
analysis, fine-tuning, and testing we can 
set an oversubscription ratio that can 
fulfill the applications current and future 
demands. 
 

2.7 Challenges for DCCN 
 
Currently issues or challenges which the data 
centers communication network will have to face 
are as; 
  

• Limited capacity between server’s & high 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     611 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

Oversubscription Ratio as traffic move up 
in hierarchy through the layers of switches 
i.e. from TOR to Aggregation switch and 
from there to Core oversubscription ratio 
increases rapidly. Moreover, for 
communication between the server’s 
located in different layer 2 domains, data 
must have to pass through layers 3 domain 
i.e. through Aggregation routers/switches 
and Border router/switches as a result link 
capacity between access and Border 
routers/switches is less than the total link 
capacity of servers connected to the 
access routers having oversubscription 
ratio of 10:1 to 80:1 [8]. Also these 
routers links is also carrying traffic 
traversing in and out of the data center so 
as a result bandwidth available over these 
links for server’s communication b/w 
different parts of data center is limited. 

• Congestion and high network latency. As 
in data center different applications are 
running generating different packets flows 
moving within and across the DCCN 
which is a multi-tier hierarchal structure 
consisting of multiple hops. In some cases 
bandwidth bottleneck is created at 
aggregation level where packets Incoming 
rate from multiple transmitters exceeds 
the packet handling rate of the receiver as 
receiver is running out of buffer space 
available to absorb packet flows. As a 
result of this congestion delay time 
increases and receiver starts dropping the 
packets which effects different application 
especially latency sensitive applications 
hence decreasing overall performance of 
the network. 

• Management of internal data-center traffic 
(i.e. east-west traffic between racks) 
which is almost 75% of the total traffic 
and is due to separation of application 
servers, databases and storage which 
results in read/write, back-up and 
replication traffic traversing with in the 
data center. Moreover, parallel processing 
distributes the tasks and then assign these 
to multiple servers hence increases the 
internal traffic in DCCN. 

• Support to a variety of traffic patterns, 
which includes short persistent "mouse" 
flows and long persistent, high bandwidth 
"elephant" flows. Mouse flows are usually 

related with bursty and latency-sensitive 
applications where as elephant flows 
usually incudes high bandwidth traffic due 
to VM (virtual-machine) migrations, data 
migrations and database backup, and Big 
data applications like Map-Reduce, 
Hadoop etc. Big data examples include 
Data generated by Particle Accelerator, 
Airplanes, Trains, Self-driving Cars, 
patients data in Health Care hospitals etc. 
e.g. In 2014 Onboard data produced by 
Aviation Boeing 787 is 40TB/hour and 
out of which 0.5TB/hour of data is 
Transmitted to data center. Usually most 
of the flows within a data center are 
mouse flows, but most of the data belong 
to a few elephant flows. Hence handling 
all type of traffic simultaneously keeping 
overall network delay within limit is a real 
challenge. 

• Scalability, Agility and Efficient resource 
utilization issues as network grow. As no 
of Communication devices increases their 
management, fault handling and their 
troubleshooting also becomes difficult, 
not only this but it will also increase 
management overhead bytes on the 
network.  

• Increase in Energy requirements and its 
consumption with the addition of more 
devices.  

 
Currently in traditional data centers access layer 
comprises of server racks and each rack consist of 
no of servers which can be Rack mount server or 
Chassis based & TOR (Top of Rack) switch also 
known as Fabric interconnect to which all the 
servers of that rack is connected. This TOR switch 
of each rack is connected to EOR (End of Row) 
switch which is considered as the packet based 
aggregation layer of each cluster where cluster is a 
group of server racks. This aggregation layer on 
one side provides the connectivity between clusters 
of the data center over which East-West packet 
based Data traffic traverse and on other side it also 
provides connectivity with the core network as well 
over which North-South bound traffic traverse. 
Hence aggregation layer is the layer where problem 
comes as 75% traffic (East-West traffic) of the 
Data center traverse through it, resulting in the 
bandwidth bottleneck & increase in latency. 
Consequently, this will badly effect delay sensitive 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     612 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

applications and degrades overall network 
performance.  
 
2.8 DCCN Topologies 
 
DCCN is usually a layered architecture consisting 
of three layers (core, distribution and access) built 
to hosts servers provide different types of services 
to their clients and connectivity to their servers. A 
Data center communication network (DCCN) 
infrastructure is the backbone for its applications 
and should have these characteristics like 
reliability, scalability, low latency and enough 
bandwidth in order to avoid any congestion or 
bottleneck in the network. These characteristics 
mainly depend upon the network architecture in 
which the DCCN is laid and play a vital role in 
overall performance of Data center. According to 
cisco Common DCCN Architecture is shown in 
fig2.4 [9]. 
 

 
Fig 2.4 Common DCCN Architecture 

 
The benefit of layered architecture is that it 
improves network resiliency, modularity and 
flexibility. In this architecture every layer performs 
different functionalities for distinct profiles like 
core layer includes routers (i.e. Aggregation router 
& Border Router) which will do forwarding 
decisions for both Ingress/Egress traffic using 
routing protocols. Aggregation router is used for 
routing between various layer 2 domains while 
core router is used for carrying traffic between 
aggregation routers and routing over the internet or 
WAN. Layer 2 domain consists of Core switches 
that provides highly flexible, scalable connections 
with multiple aggregation layer switches. This 
layer provides a central point for server IP subnets 
and act as a default gateway. It usually used to 
forward inter server traffic b/w multiple 
aggregation layer switches and state full network 

devices like server load balancers and firewalls are 
attached on this layer. Access layer usually consist 
of switches to which servers having a same IP 
subnet are attached and communicate with each 
other. It helps to improve network management 
and responsible to exchange any type of traffic like 
unicast, multicast or broadcast between servers. 
 
In above figure at the bottom there is server layer 
mounted in server racks. These servers are running 
many Virtual machines which are assigned to 
different applications running inside the data 
center. An application is usually associated with 
multiple public IP’s to handle and respond external 
client’s requests coming from internet. For 
processing, these requests is distributed among the 
pool of servers by specialized hardware known as 
load balancer connected to the core switches in 
redundant fashion. The IP address which handle 
these requests is called VIP (virtual IP address) 
configured on the load balancers and the server IP 
addresses over which requests are forwarded are 
known as DIP’s (Direct IP addresses)[10]. For each 
VIP there is list of DIP’s configured on the load 
balancers over which incoming requests are 
forwarded for processing.    
Typically there are 20 to 40 rack mount servers 
installed in one rack and these servers are 
connected to Top of the Rack (TOR) switch 
installed in the same rack over 1gbps link which 
can be electrical or optical. These TOR switches 
are connected with the two aggregation switches in 
redundant fashion. This aggregation layer is further 
connected to the Core layer switches. Below Layer 
3 domain there is a layer 2 domain consisting of 
core Switches Aggregation switches and TOR 
switches connecting thousands of servers.  
  
This three layered hierarchical design is most 
widely deployed in the world and suitable for small 
and medium sized data centers but seeing the 
current growth trends there is a need of new 
architecture which should be designed in order to 
meet the future challenges like scalability, cross-
sectional bandwidth, power consumption and cost 
of networking equipment. By seeing these 
challenges researchers present new architectures 
for DCCN out of which major is described as; 
   
2.8.1 Fat-Tree 
 
This DCCN architecture is proposed by Al-Fareset 
al [11]. It uses the concept of fat-tree and aiming to 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     613 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

increase the scalability, end-to-end cross sectional 
bandwidth, backward compatibility and decrease 
cost and fault tolerance. This topology divides the 
overall infrastructure into different pods and the 
core. The pods consist of Servers, TORS (Access 
switches) and aggregation switches. These 
aggregation switches connects the Pods to the core 
switches and each port of the core switch is 
connected to one of the aggregation switch of 
different pod. It supposes that all of the switches 
are identical having K number of ports, hence have 
K number of pods each having K/2 number of 
Access and aggregation switches. Each aggregate 
switch in a pod is connected to all Access switches 
to which K/2 servers are connected. Hence if K=4 
then there are 4 pods and 4 no of servers in each 
pod each having 4/2=2 edge and aggregation 
switches as shown in fig;  
 

 
Fig 2.5 Fat-Tree topology architecture 

 
This topology provides customized IP address 
scheme and multipath routing algorithm by 
customizing the data links in the DCCN 
architecture. The comparison of 3 tier and fat-tree 
is as shown in fig 2.6. 

 
Fig 2.6 Comparision of 3 Tier and Fat-Tree topologies architecture 

 
2.8.2 BCube 
 
This topology [12] is proposed for modular data 
centers built inside the container offering simple 
installation and easy migration but scalability is 
low as designed for container data center.  This 
architecture consists of layers of COTS 
(Commodity off the shelf) switches and servers 
which are responsible for packet forwarding. At 

level0 BCube architecture consists of multiple 
modules of BCube0 each having one switch with n 
number of ports connected to n no of servers. At 
level 1 there is a BCube1 module which consists of 
n switches to which n BCube0 modules or 
networks are connected. Each switch of BCube1 is 
connected to one server of BCube0 module. 

 
Fig 2.7 BCube Topology Architecture 

 
In above fig server 0 of  BCube00 is directly 
communicating to server 1 using its local switch, 
whereas  server 1 of  BCube01 forward its packet 
to server 1 through local switch which then 
forward these packets to its destination which is 
server 2 of BCube02 through upper level BCube1 
switch. Also the communication between same 
level BCubes can take place through upper level 
BCube1 switch as server 3 of BCube02 is 
communicating with server 3 of BCube03 as 
shown in fig 2.7. 
 
2.8.3 DCell 
 
DCell is a recursively defined architecture which is 
proposed by Guo et al . This architecture is highly 
saleable and uses mini switches and servers for 
forwarding packets. Like BCube its main module is 
DCell0 consisting of single switch that is 
connected to n servers. Dcell1 consist of n+1 
number of DCell0modules and each DCell0module 
is connected by one link each to the other 
DCell0modules through its servers as shown in fig 
2.9.  
 

 
Fig 2.8 DCell Topology Architecture 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     614 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
2.8.4VL2 
 
Virtual layer 2 (VL2) is a Fat-Tree based DCCN 
architecture aimed to provide flat automated IP 
addressing scheme facilitating placement of servers 
anywhere in the network without manual IP 
address configuration. This allows the provision 
that any service can be assigned to any server in 
the network. This architecture provides scalability 
supporting large scale data centers, high bandwidth 
between servers, Agility by dynamic allocation of 
servers to applications from shared pool resulting 
in efficient resource utilization and also provides 
ability to transparently migrate services or virtual 
machines to any server keeping same IP address & 
network configuration just like connected via LAN. 
It uses [14] address resolution based on end system 
to scale to large server pool, flat addressing scheme 
to place service instances anywhere in network just 
like a LAN (Local Area Network) where any Host 
with any IP address to any port on a switch can be 
connected & valiant load balancing to uniformly 
distribute traffic across the DCCN. To support 
agility VL2 uses a scheme of addressing which 
separates names of the servers named as 
AAs(Application specific address) from their 
location named as LAs(Location Specific Address) 
as shown in fig 2.10 [14]. IN VL2 switches and 
interfaces are assigned LAs and network operate 
using LAs(Location specific IP addresses), 
whereas applications uses AAs(Application 
specific IP addresses) which remains unchanged 
during VM migration independent of their location 
of migration. The Network infrastructure that 
include VL2 employs directory system for 
managing name to locator address mappings which 
is realized on servers for flexibility, dynamic re 
provisioning of service and context-aware server 
access control. A shim layer named as VL2 agent 
runs on every server that invokes directory systems 
resolution service. 
 

 

Fig 2.9 VL2 Network Architecture built with LAs and AAs 
 
Besides all these architecture there is also a need of 
architecture that not only provides backward 
compatibility with existing infrastructure and its 
architecture but can also handle current challenges 
which the DCCN are facing. In this thesis I 
proposed a new data center architecture 
HFPFMAOS which  is not only backward 
compatible with existing architecture but also can 
accommodate its challenges up to some extent. 
  
 
 
2.8.5 HFPFMAOS 
 
HFPFMAOS is a data center communication 
Network architecture (DCCN) proposed in this 
thesis which stands for “Hybrid Flow based packet 
filtering, forwarding & MEMS based all optical 
switching”. This architecture is proposed to cater 
different challenges which today’s data centers are 
facing while keeping existing infrastructure. In this 
architecture I employed OpenFlow(OF) enabled 
switches at Access layer i.e. as TOR switches and 
MEMS based all optical switching (MAOS) plane 
consisting of MEMS switches (MS) at the 
aggregation layer along with traditional switches. 
This MAOS plane is connected with OF enabled 
TOR switches for dynamically provisioning High 
bandwidth data paths between the servers. For 
control and management, these OF switches and 
MAOS plane are connected with SDN controller 
over SSL/TCP. This will provide us centralized 
Intelligence of whole network by keeping an eye 
on all the flows passing through the OF enabled 
switches and helps us to dynamically create High 
bandwidth data path whenever and wherever it is 
required between the servers in the data center. 
Moreover it will reduce management overhead 
bytes on the network and helps us in quick fault 
diagnosis and its rectification. The architecture of 
this proposed solution is as;  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     615 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Fig 2.10 HFPFMAOS Architecture for DCCN 

 
 

MAOS (MEMS all Optical Switching) 
 
3.1 Introduction 
 
Data center intercommunication Network is 
demanding a dramatic increase in its capacity as 
traffic is going to increase day by day 
exponentially. So all optical switching is best 
solution to get relief from electronic switched 
network bottlenecks. As optical fiber can offer very 
high bandwidth but it is limited by transmission 
capacity and electronic switching. Hence all optical 
switching can perform a vital role as switching is 
performed in optical domain.    
3.2 OOO Switching (All Optical) 
 
All Optical switching is an all optical networking 
technology in which the packet that enters the 
network travels in all optical form ingress point to 
egress point. In all Optical switching a circuit is 
established from ingress node to egress node by 
adjusting optical cross connects and data travel 
through this circuit in all optical form. It is an 
important breakthrough which can help us to solve 
the electronic switched network bottleneck as in it 
traffic is switched directly in optical domain 
instead of several optical-electrical-optical 
conversions. 
 
3.3 Benefits of OOO Switching 
 
The benefits of employing all optical switching in 
data center are as; 
  

• Data centers usually employ POD based 
architecture resulting in poor computing 
resource utilization but using optical 
switching these compute resources can be 

shared between different PODs for 
maximum efficiency. 

• Enhances revenue by provisioning new 
services quickly. 

• Less power dissipation than conventional 
electrical switch.   

• Create and reallocate capacity on demand. 
• Incredible improvement in the operational 

efficiency of data center as applications 
runs smoothly by efficiently utilization of 
compute resources and by using 3D 
optical MEMS switching technology.  

• Helpful in enhancing customer 
satisfaction by improving network 
efficiency, reliability. 

• Improve quality of service & accelerate 
fault detection. 

• Reduces CAPEX and operational 
expenses (OPEX) by provisioning easy up 
gradation to any higher optical data rates, 
improving network efficiency, reducing 
power consumption and by efficiently 
utilizing server and storage assets. 
 

3.4 Applications of OOO Switching 
 
Optical switching can be employed in wide range 
of applications which are as under; 

• Optical switches can be employed in IP 
network for providing Optical circuit 
switching or optical packet switching.  

• MUX & DEMUX: It is used in optical 
MUX (multiplexers) and DMUX 
(demultiplexers) to add and drop specific 
wavelengths from the composite signal 
consisting of multi wavelengths to avoid 
electronic operations. E.g. wavelength 
selectable switches (WSS).  

• Fiber Restoration and Protection 
switching: It can be used for switching 
and restoring optical paths in case of any 
optical link failure having a switching 
time in ms (milli Sec). These are usually 
small switches. 

• Signal Monitoring: It can be used for 
network monitoring and its management 
like it can be used for monitoring the 
optical power of a link for which WSS is 
usually used. 
 

3.5OOO Switching Technologies 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     616 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

There are different switches that employ different 
all optical switching technologies which have 
different features and performance like Scalability, 
insertion loss, switching speed and crosstalk etc. A 
list of these is as [17]. 
 

• Micro Electromechanical system(MEMS) 
switching 

• Liquid-crystal switching 
• Bubble switching 
• Electro-Holographic Switching 
• Thermo-Optical switching 
• Liquid-Crystals-in-Polymer Switching 
• Acousto-Optic Switching 
• Semiconductor-Optical-Amplifiers 

(SOA)Switching 
 
Comparison of few of few OOO optical switching 
is given in this Table 3.1[17][18]. 

 

 
Table 3.1 Comparison of different Optical switching technologies. 

 
Hence from table it is obvious that MEMS 
technology have many advantages over other 
technologies like High scalability using 3D 
MEMS, low cross-talk& insertion-loss, 
independence of bit 
rate/wavelengths/modulation/polarization, 
switching speed in ms(some also claims in ns) and 
most important is low cost and low power 
consumption. Due to these reasons I choose 3D 
MEMS optical switching should be employed in 
Data center for Optical circuit switching. 
 
3.6 Micro Electro Mechanical Systems (MEMS) 
 

Micro electromechanical systems (MEMS) is a 
technology that combines computers with tiny 
mechanical devices such as sensors, valves, gears, 
mirrors, and actuators embedded in semiconductor 
chips[31]. It contains micro-circuitry on a tiny 
silicon chip into which some mechanical device 
such as a moveable micro-mirrors or a sensor has 
been installed that can reflect optical signal from 
input fibres to output fibres. By rotating or tilting 
the mirrors at different angles we can reflect the 
light beam from input port to any output port 
direction. Switching of light beam from one I/P 
port to other O/P port depends upon the  tilt angle 
of mirror’s in the I/P and O/P MEMS array. It 
consists of a pair of collimator arrays having I/O 
ports and a pair of MEMS mirror array arranged in 
a Z shaped layout. 
 
3.7 Design and Principle 
 
The basic structure of 3D MEMS optical switch 
consists of following component as shown in fig 
3.1[16]. 

(i) Input collimator: An array of I/P 
fiber ports which guides the light 
from each I/P fiber to its I/P MEMS 
mirror array.  

(ii) Mirror matrix: It is an array of 
MEMS I/P mirrors and an array of 
MEMS O/P mirrors. 

(iii) Output collimator: An array of O/P 
fiber ports which couples the light 
from each O/P mirror to its O/P fiber.  
 

 
Fig. 3.1 Basic structure of a 3D MEMS optical switch 

As in figure the MEMS optical switch consists of 
two optical fibre collimator arrays one for each I/P 
and O/P ports and two MEMS Tilt mirror arrays. 
Each mirror in the I/P and O/P MEMS array is 
dedicated for each port in the I/P and O/P 
collimator array. The optical beam coming from I/p 
port of the I/P collimator strikes to their dedicated 
mirror in the I/P MEMS mirror array from where it 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     617 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

is reflected towards one of the mirror of O/P 
MEMS mirror array depending upon its tilt angle. 
When the light beam reaches to one of the mirror 
of O/P MEMS mirror array it is again reflected 
towards one of the O/P port of the O/P collimator 
array. This optical path Connection from the I/P 
port to the O/P port of the collimator arrays 
depends upon the tilt angle of both the mirrors in 
the I/P and O/P MEMS mirror array. The angle at 
which the mirror needed to be tilt is denoted by θ. 
When Corner mirror of the MEMS input Array is 
at the angle of 0° then the input light will be 
deflected to the opposite corner mirror of the 
MEMS output Array as shown in fig 3.2.  

 
Fig 3.2 Conventional 3D MEMS optical switch. 

 
Maximum tilt angle which is required to reflect the 
optical beam depends upon its position in the array 
and it increases as no of MEMS mirrors increases. 
To make the required maximum tilt angle constant 
for all mirrors in the array, a toroidal concave 
mirror can be used between the I/P MEMS mirror 
array and O/P MEMS mirror array to perform 
optical Fourier Transform. This will result in a W 
shaped layout providing a folded optical path as 
shown in figure 3.3. 
  

 
Fig 3.3 3D MEMS optical switch with Toroidal concave 

mirror. 
 
Optical beam entering  from the I/P collimator 
array is reflected by I/P MEMS mirror array and 
strike with the concave mirror at an incident angle 
which is determined by the MEMS mirror tilt angle 

δ. This Toroidal concave mirror performs a optical 
Fourier transform which converges the optical 
beam with a positional shift “/” towards output 
MEMS mirror array where the angle of each mirror 
is adjusted in such a way that the light beam is 
reflected into the desired output port of the 
collimator array. This shift “/” can be expressed in 
mathematical expression in terms of concave 
mirror focal length and the tilt angle of the MEMS 
mirror as; 
 

/ = f x 2δ 
 

It means that after using toroidal concave mirror 
the connecting output MEMS mirror is dependent 
on the tilt angle of the Input MEMS mirror instead 
of their position in the array. This W shaped layout 
providing a folded optical path results in a compact 
layout but it introduces off-axis aberration in X-Z 
plane which is reduced by using toroidal shape 
concave mirror. The calculated loss due to this 
aberration is less than 0.5dB.  
 
The capacity of a switch or number of ports in the 
optical switch can be increased by producing large 
scale MEMS mirror arrays and other optical 
components but it increases fabrication 
complexities and makes that process slow. This 
problem is solved by arranging multiple small scale 
MEMS mirror and collimator arrays in a matrix 
form which makes fabrication process fast and less 
complicated e.g. 128 optical port collimator arrays 
and 128 port MEMS mirror array can be use in a 
2X2 array form to obtain a capacity of 512 ports. 
This helps in producing high capacity optical 
switches and leads to ease in fabrication process 
with a small accumulated pitch error.  The 
schematic diagram of 3D 512 MEMS optical ports 
switch with 128 ports in 2X2 array form is shown 
in fig 3.4. 
  

 
Fig 3.4 Schematic of 3D 512 MEMS optical ports 

switch 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     618 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

In above Fig 3.4 switch consists of four 128 ports 
MEMS mirror arrays arranged in a 2X2 matrix 
form. These arrays are mounted precisely in a 
ceramic package using multichip module 
technology.  The 128 port MEMS mirrors are 
arranged in 2D in the array. Each mirror have four 
electrodes underneath it and has a gimbal structure 
which allow it to rotate electrostatically around two 
orthogonal axis resulting in a tilting angle range of 
4.5° in any direction. 
 
 
 
3.8 MEMS Mirror Structure 
 
The mems mirror consist of two single crystal 
silicon substrates 1) Mirror substrate 2) Driving 
electrode substrate as shown in fig 3.5. 

 
Fig 3.5 Cross Sectional Schematic of MEMS tilt mirror 
 
These substrates are processed independently and 
is bonded each other by flip chip in such a way that 
air gap is formed between mirrors and electrodes. 
When we apply a voltage between electrodes and 
mirrors electrostatic force is generated which 
actuate the mirrors. Hence by applying a driving 
voltage to each electrode we can control the tilt 
angle of these mirrors. 
  
3.8.1 Mirror Substrate 
 
It consists of torsion springs and a mirror which are 
made up of single silicon crystal providing highly 
reliable movement to the mirror. The MEMS 
mirror which has a diameter of 600μm is connected 
on X axis to a gimbal ring and is supported by two 
folded torsion springs, while on the Y axis the 
gimbal ring is connected to the base by another pair 
of folded torsion springs as shown in Fig 3.6[16] 
These torsion springs have a high aspect ratio 
which is the ratio of spring thickness to its width. 
These springs have high rigorousness in Z direction 
with respect to torsion direction which stops the 

mirror from being pulled down and contact the 
electrodes. Hence optical beam can be reflected 
easily towards specific direction in 3D space by 
turning the mirror on the X axis and Y axis. 

 
Fig 3.6 SEM snaps of MEMS mirror and High aspect torsion spring. 

 
 
 
3.8.1.1 Fabrication Method of Mirror Electrode 
Substrate 
 
The process flow for the fabrication of mirror 
electrode substrate include following steps 
First of all by using lithography and dry etching 
mirror pattern is formed on SOI wafer (Silicon-on-
Insulator) as shown in Fig 3.7 [16] step (a) then a 
coating of polyimide is spinned over the mirror 
pattern formed (b). In third step on the opposite 
side of the bulk Si the pattern for resistant mask(c) 
and mirror opening (d) is formed by dry etching. 
Next BOX (buried oxide) is removed with 
hydrofluoric acid which acts as an etching stopper 
(e), after that polyimide coating which protect the 
mirror from shocks during dicing is spinned again 
on the opposite side of the mirror coated surface 
(f). After dicing process it is exposed to oxygen 
plasma to ash off the polyimide layer (g). The 
mirror fabrication process by using this dry 
process is called “In-process sticking of the 
mirror”. AS Au coating on the top surface of the 
mirror provides good reflectivity to optical beams 
so this coating is done on both side of the mirror. 
The optical characteristics of the switch consisting 
of MEMS mirror array depends upon the flatness 
of the mirror surface hence Peak-to-valley 
difference can be used to check the flatness of the 
mirror surface which is 0.05 µm in our case. 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     619 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Fig 3.7 Fabrication flow process of mirror substrate 

 
3.8.2 Driving Electrode Substrate 
 
When we apply the voltage to the electrodes, 
electrostatic force is generated which is inversely 
proportional to the square of the gap between the 
electrode and the mirror. This electrostatic force 
causes the movement of mirrors. 
  
 
3.8.2.1 Fabrication of Driving Electrode 
Substrate 
 
In first step Si wafer is thermally oxidized and 0th 
level interconnection is formed, then by 
evaporation metallic layer of AU/Ti is deposited 
over it. The Au layer act as a seed and Ti layer act 
as an adhesive for the successive electroplating as 
in fig 3.9step (a). In sec step polyimide coating is 
spinned over it as in (b) In third step by using 
lithography mirror substrate support and electrode 
are patterned over the first layer as in (c). While 
electroplating the thickness of the metal’s varies 
with respect to the area to be plated because current 
densities on the wafer vary. So after electroplating 
to obtain similar electroplated area for each 
electrode, solid rectangular structures for mirror 
substrate support is formed as in fig 3.8. Now 
repeat the processes of polyimide coating, 
lithography and electroplating and we get thick 
multilevel electrodes embedded in polyimide as in 
(d, e, f). In last step polyimide is ashed away by 
exposing it to oxygen plasma. Hence after all these 
steps we get electrodes and mirror substrate 
supports whose height is over 80 µm ensuring 
enough space for tilting the mirror on the 
electrodes.  

 
Fig 3.8 SEM snap of Electrodes 

 
Fig 3.9 Fabrication flow process of Driving Electrode 

Substrate 
 

3.9 MEMS Mirror Motion 
 
The motion of the MEMS mirror array depends 
upon alignment accuracy during its bonding with 
the mirror substrate and driving electrode substrate. 
In case of any error in alignment during bonding 
process will cause misalignment in the centers of 
the mirror and electrodes and this will result in 
non-uniformity in the mirror motion, tilt direction 
and crosstalk between the tilt motion about X and 
Y axes. The relationship between applied voltage 
and mirror tilt angle is shown in Fig 3.10. 
 

 
Fig 3.10 Relationship b/w Applied voltage & Mirror Tilt Angle 
 
The graph shows the crosstalk for applied voltage 
and tilting angle between rotations along X axis 
and Y axis.As MEMS mirror array is the main 
functional components in the 3D MEMS optical 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     620 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

switch, hence its characteristics like reflectivity, 
aspect ratio, flatness, movement etc. directly affect 
the performance of the switch. The number of ports 
of the 3D MEMS switch is limited by the flatness 
and the size of the micro mirrors, as well as their 
fill factor and scan angle. 
 
3.10 Key Advantages of MEMS Switches in 
DCCN 
 
Key Advantages of using MEMS switches in data 
center is as; 
  
• These photonic switches can switch large 

number of optical signals simultaneously 
hence in data center it can  provide any-to-
any connectivity between servers to transfer 
big data while offering a very low latency 
(millisec to nanosec depending upon 
manufacturer)  which is very less than IP 
switches latency (usually in microsec) used 
in data centers.  

• These switches are protocol and data rate 
independent so they can accommodate any 
data rate from 10Mbps to 100Gbps 
(currently maximum available) and beyond 
without any optics change.  

• They can provide direct high capacity pure 
optical data paths b/w any TOR switches 
while bypassing the packet-based 
aggregation network to reduce network 
latency and to transfer the elephant traffic 
b/w servers when required.   
   

 
SDN 
 
4.1 Introduction 
 
SDN stands for Software Defined networking. It is 
an emerging architecture that can be adaptable for 
designing and managing networks like DCCN 
(Data Center communication Network), CAN 
(campus area network) and service provider 
networks (ISP’s) due to its dynamic approach, 
cost-effectiveness and manageability. The main 
objective of this architecture is to separate the 
control plane of the devices from its 
data/forwarding plane while provisioning 
programmability of its control plane. It presents a 
solution for controlling network and its 
management by centralizing and aggregating the 
control plane intelligence of the entire network 

infrastructure keeping its forwarding/data plane 
separate from it. Hence the network devices intact 
their data plane (switching fabric) but hand over 
their intelligence & control (routing, switching and 
forwarding decisions) to the controller which is a 
commodity server running NOS (network 
operating system). This allows the network 
administrator to dynamically configure and control 
the network devices through the applications 
programmed at the top of SDN architecture and 
makes the network highly flexible and easily 
manageable. 
 

4.2 SDN Architecture 
 
Currently in most network devices, control plane 
and the data plane exist on the same device or in 
other words data flow functions like switching, 
forwarding, routing and different protocols making 
these decisions all resides within that device. The 
main goal of SDN as defined in [7] is to “provide 
open user-controlled management of the 
forwarding hardware of a network element.” 
Software defined networking (SDN) based 
architecture consist of following components also 
shown in Fig 4.1. 
 

• Application Plane 
• Control Plane 
• Data Plane 
• North Bound API’s 
• .South Bound API’s 
• East-West Protocols 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     621 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Fig 4.1: Software Defined Networking (SDN) Architecture. 

 
4.2.1 Application Layer 
 
It is the upper most layer of SDN (Software 
Defined Networking) architecture consisting of 
programmable applications that defines policies, 
control and logical operations to instruct the 
forwarding devices of the network. This layer 
retains network applications that assists the control 
plane in configuring network elements and can 
includes network features like forwarding schemes, 
manageability and security policies etc. 
Application layer can abstract the global view of 
all the network elements with the help of controller 
and can utilize that information for providing 
appropriate guideline to the control layer. In our 
design at application layer network monitoring 
applications like PRTG which continuously 
monitoring the link utilization of all the interfaces 
of the switch, management applications which 
provides CLI/ GUI of the network devices is 
running.  
    
4.2.2 Controller or Control Plane 
 
It is considered as brain of the network and is 
responsible to manage and programming the 
forwarding plane. The control plane provides an 
abstract view of all the network elements through 
topology database which uses LLDP and BDDP in 

our case. Building topology is critical for the 
smooth and accurate operation of other internal 
controller services like network configuration, host 
tracking, route planning, traffic switching, network 
monitoring and traffic engineering etc. It enables 
the network administrator to manage and define 
network operations (like applying custom 
policies/protocols implementation, routing) by 
dictating these operation to Network Elements like 
(Router, Switches) across the network. It consists 
of one or more than one software controllers which 
is used to communicate with the network elements 
of the forwarding plane. The open source 
controllers are Open day light (ODL), network 
operating system (NOX) C++ based, POX python 
based, floodlight, LOOM etc. but most active and 
supported by most vendors is ODL. 
 
4.2.3 Data Plane 
 
It is bottom most layer in SDN network 
architecture also known as infrastructure layer 
which comprises of forwarding Network Elements 
like (Router, Switches).  Its main responsibilities 
include data forwarding, Statistics gathering & 
monitoring information. In our case it consists of 
OF switches at access layer and MEMS switches at 
aggregation layer. 
 
4.2.4 North Bound API’s 
 
The software interfaces between the SDN 
applications and the software modules of the 
controller are known as the northbound APIs 
(application programming interfaces). The 
interface between the control plane and the 
application plane is usually called northbound 
interface. 
 
4.2.5 South Bound API’s 
 
Standardized API’s (Application Programed 
interfaces) through which SDN controller 
communicate with forwarding network 
infrastructure(like switches and routers) is known 
as south bound API. The protocol which SDN 
controller uses to manage and control the interface 
with various elements of NE’s is known as south 
bound protocol which includes OpenFlow(OF), 
SNMP, BGP, PCEP etc. [18]. The first and most 
commonly used southbound interface protocol is 
OpenFlow (OF) which allows the SDN controller 
to manage and configure the switches. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     622 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

  
4.2.6 East-West Protocols 
 
These protocols are used to manage the interaction 
between various controllers in a multi-controller-
based architecture. In a wider perspective, SDN 
presents a networking architecture in which Data 
traffic routing decisions is done outside of the 
physical switching hardware. Hence when the SDN 
along with PFFS and MOOOS is implemented in 
data center real network intelligence can be 
achieved.  Hence to practically implement the 
concept of SDN into the communication network 
which is in our case is DCCN, there should be a 
logical architecture which is common in all 
network devices like routers, switches etc. and 
managed by SDN controller. Secondly there should 
be a secure standard protocol to communicate 
between SDN controller and network devices.  
Different vendor equipment may implement this 
logical architecture in different ways but from SDN 
controller perspective it functions like a uniform 
logical switch. AS OpenFlow (OF) fulfill both 
these requirements and is the First and most widely 
used interface b/w Infrastructure layer (Data plane) 
and control plane so it is explained. 
  
4.3 Open Flow (OF) 
 
OpenFlow(OF) is most common southbound 
interface of SDN architecture standardized by the 
Open Networking Foundation (ONF) which is 
nonprofit organization lead by the board of 
directors of seven renown companies that includes 
Microsoft, Google, Yahoo, Facebook, Verizon, 
NTT and Deutsche Telecom[23]. Initial version of 
OF is 1.0 which is developed by Stanford 
University but later on owned by ONF and its 
current version is 1.5 launched in December 2014.  
 
It is an open standard communication protocol 
which explains the interaction of one or more than 
one control servers with SDN compliant switches. 
It provides a way to integrate multi-vendor 
switches to a single SDN controller and software 
based access till the flow table entries which 
directs routers and switches to guide the data traffic 
flowing through the network. An OF controller 
install the flow table entries in the OF compliance 
switches to forward traffic in accordance with these 
flow entries. Network administrator can use these 
flow tables to change data traffic flows and 
network layout. This protocol also provides 

management tools that can be used for packet 
filtering and to control topology changes. Almost 
all the well-known vendors like Cisco, HP, IBM, 
Brocade etc. offers routers and switches that 
support the OF protocol. OF or SDN compliance 
switches are of two types 
 
4.3.1 Open Flow-Only Switches 
 
These switches are also called Pure SDN switches 
or SDN-only switches which process all packets 
only by the OF pipeline and only support OF 
operation. In this switch all control functions like 
high-level Routing decisions will be done by a 
central controller and switch acts like a “dumb” 
device which is totally restricted to the data plane 
for forwarding data flows b/w different ports as 
dictated by SDN controller. OpenFlow-only 
switches architecture is shown in fig 4.3. The OF 
switch and SDN controller communicate with each 
other via OF protocol by exchanging messages like 
“Packet - IN”, “Packet - Out”, “Mod-forw-table”, 
“Get-Stats” etc.  
 

 
Fig 4.2 OpenFlow-Only Switch Architecture 

 
4.3.2 OpenFlow-Hybrid switches 
 
These switches support both OF operations (SDN) 
and traditional Ethernet switching operations like 
L2 Ethernet switching, L3 routing, VLAN 
isolation, ACL and QoS processing. These 
switches can classify data packets outside OF and 
then route that traffic either to normal pipeline or 
OF pipeline. Using hybrid switches network 
administrator can manage different types of traffic 
by configuring the SDN controller to discover and 
handle certain traffic flows like big Data while 
traditional routing & switching of rest of the traffic 
continues by different networking protocols 
configured on the network. Its architecture is 
shown in fig 4.3 as; 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     623 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Fig 4.3 Hybrid Switch Architecture 

 
4.3.3 OpenFlow (OF) Architecture 
 
OpenFlow (OF) architecture consists of 
Infrastructure layer consisting of several OF 
compliance switches which are controlled by OF 
controller which can be one or more. OF switches 
communicate with the controller over a secure 
channel (secure socket layer) through a OF 
protocol. Each OF switch is further connected 
either to the other OF switch or Packet source and 
destination i.e. End Host or Server as shown in 
figure 4.4. 
  

 
Fig 4.4 Basic Open Flow (OF) Architecture 

 
Each OF switch can consists of multiple Flow 
tables to performs packet lookup and matching 
against flow entries in these tables to manage the 
packets flowing through it, Where a flow that could 
be a sequence of packets having same source port, 
same source/destination IP address or same MAC 
address or same VLAN (virtual local area network) 
tag or same I/P switch port, TCP/UDP port no etc. 
  
In our proposed solution for DCCN OF switches is 
deployed in Access layer as TOR which is on one 
end is connected to the End-Hosts or Servers and 
on other end it is connected to Traditional switches 
and MEMS switches at Aggregation layer. ODL 
controller is deployed as a control plane which will 
communicate with OF switch through OF protocol 
over secure channel SSL / TSL (Transport Layer 
Security). 

Logical architecture of OF switch consist of three 
tables (i) Flow Table (ii) Group Table (iii) Meter 
Table. 
 
4.3.4 Flow Table 
 
It is the basic building block of logical switch 
architecture which matches each incoming packet 
against a particular flow table which consists of 
multiple flow entries and specifies the action to be 
performed on that. This packet may pass through 
one or more flow table working in a pipeline 
manner. Using OF protocol a controller can add, 
delete and modify flow entries proactively or 
reactively (In response of incoming packet) from 
the flow tables of an OF switch as shown in fig 4.5. 
 

 
Fig 4.5 Proactive & Reactive Model of Flow Table Entries 

 
In Reactive Model flow entries are built when 
something happens i.e. after arrival of packet it 
consult the controller and do action according to its 
instructions, whereas in Proactive model flow 
entries are built before something happens i.e. in 
advance and when packet comes it do not consult 
to controller. When first packet enters the switch 
OF agent software on the switch perform a flow 
table lookup in the ASIC in case of hardware, and 
in case of virtual switch in software flow table. If it 
is first packet so switch probably do not have any 
flow entry to match this packet, so it is a Table-
Miss entry and as a default action switch forward 
this packet to controller as a “Packet-IN” massage 
which learns that a packet is arrive on a switch 
port, then controller reactively in response of it 
send a “Packet-Out” and “Flow-MOD” message to 
the switch to perform some action on the packet 
and create a flow table entry in its flow table. 
When packet arrive in the switch it starts matching 
the packet against the flow entries present in first 
flow table which might be proceed to other tables if 
no match found in first table. This matching is 
done in priority order means first matching entry 
have highest priority and is used in case of match 

End-Host 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     624 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

and instructions associated with that flow entry is 
carried out which is either actions set 
(modification, Packet Forwarding, or group table 
processing) or modify pipeline processing. This 
Pipeline processing permits the packet to be 
forwarded to succeeding table for further 
processing and its information b/w tables is 
communicated in the form of metadata as shown in 
fig 4.6. 
 

 
Fig 4.6 Multiple Table Pipeline processing 

 
Pipeline processing pauses when instructions 
associated with the matching flow entry don’t 
identify next table, in this situation packet is first 
modified and then forwarded. In case of no match 
the packet is marked as “Table-miss” flow entry 
which wildcards all match fields (all fields omitted) 
having a lowest priority of 0 and depending on 
“Table-miss” flow entry configuration, packet is 
forwarded towards controller through control 
channel by Packet-IN message or continue to next 
table or may drop. The flow chart of Packet 
processing is shown in fig 4.7. 
 

 
Fig 4.7 Flow Chart of Packet Processing through OF Switch 

 
Every flow entry in a flow table consists of 
following components as shown in Table 4.1[32-+] 
as; 
 

 

 
Table 4.1 Flow Entry main components 

 
4.3.4.1 Match fields 
 
It is used for selecting packets whose field values 
matches match fields. In OF V1.5.1 there are 44 
defined match fields which consist of input port, 
metadata of previous table, Eth SRC & DST 
addresses, Eth Frame types, Vlan ID, Vlan Priority, 
IP protocol, TCP/UDP SRC & DST, IPV4 SRC 
and DST,, ARP, ICMP, IPV6, MPLS, 802.1ah 
Provider backbone bridge and egress port etc. as 
shown in Table 2.4[32]. 

 

 
Table 4.2 Flow Entry Match Field 

 
4.3.4.2 Priority 
 
It shows relative priority of flow entries. For a 
specific flow table Priority and Match fields 
together make a unique flow entry identity. 
 
4.3.4.3 Counters 
 
Update when packets match. E.g. it includes No of 
bytes received, No of packets received and dropped 
etc. 
4.3.4.4 Instructions 
 
To modify the pipeline processing or the action set. 
 
4.3.4.5 Timeouts 
 
Maximum idle time for a switch before which flow 
is expired. 
 
4.3.4.6 Cookie 
 
These are the data value chosen by the controller 
and is opaque. It can be used by the OF controller 
to filter flow statistics entries, flow deletion and 
modification requests. These values are not used 
while packet processing. 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     625 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

4.3.5 Group Table 
 
Flow table can direct its flows to Group Table to 
carry out various actions that can affect more than 
one flows. A group table consist of group entries 
which are identified its group identifier. Group 
entry main components in group table are as  
 

 
Table 4.3 Group Entry main components in a group Table 

 
4.3.5.1 Group identifier 
 
Each group entry is uniquely identified by this 32 
bit identifier. 

 
4.3.5.2 Group type 
 
To support different group types marked with 
“Required” and “Optional”. 

 
4.3.5.3 Counters 
 
Counters are used to count packets processed by a 
group. 
 
4.3.5.4 Action buckets 
 
It contains a list of actions to execute in order that 
will modify packets and forward them to a port. 
This bucket of actions always implemented in the 
form of set of action. A group entry can involve 
zero or more buckets except group type marked 
with “Required: Indirect” consist of only one 
bucket. In case if a group have no bucket then it 
will straight away drops the packets. 

 
Fig.4.8 OpenFlow packets pipeline Processing 

 
OF packet pipeline processing is done in two steps 
i.e. Ingress processing followed by Egress 
processing. First and main stage is Ingress 
processing, this is the stage in which packet enters 

the OF switch and can involve more than one Flow 
tables lookup, while second stage is Egress 
processing which starts after the determination of 
output port and may or may not involve flow 
tables. 
 
4.3.6 Meter Table 
 
It can carry out performance related actions on a 
flow. It consists of meter entries defining per-flow 
meter. Per-flow meter enable OF to implement 
QoS policies like rate limiting for a number of 
flows to a specific bandwidth, and DSCP 
(Differentiated service code point) based metering 
can classify packets into different groups according 
to their data rate. Meters are directly attached with 
flow entries instead of ports and after measuring, 
control the aggregate rate of all packet flows and 
can specify a meter action. Meter Entry main 
components are shown as; 
 

 
Table 4.4 Meter Entry main components in meter table 

 
4.3.6.1 Meter Identifier   
 
It is a 32 bit identifier which is used to uniquely 
identify each meter entry. 

 
4.3.6.2 Meter Bands 
 
It is a list of meter bands which are not in ordered 
form and defines the way to process the packets by 
specifying the rate of each band. Meter bands are 
used to define the meter behavior with packets for 
multiple ranges of meter rate measured which is 
calculated by all directing packets to that meter 
from all flow entries. A meter can consist of more 
than one meter bands but a packet is processed by 
only one meter band. 
 

 
Table 4.5 Main Components of Meter Band 

 
4.3.6.2.1 Band Type 
 
It defines the way by which packets processes. 
 
4.3.6.2.2 Rate 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     626 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

It is a target rate for a Meter band. For the selection 
of meter band Meter uses it, usually the band for 
the lowest rate is applied. 
 
4.3.6.2.3 Burst 
 
Granularity of the meter band is defined by it. 
 
4.3.6.2.4 Counters 
 
When meter band processes packets it is updated. 
 
4.3.6.2.5 Type specific arguments 
 
Optional arguments for some band types. Meter 
bands ranking depends on the increase in the target 
rate, rank 0 is of the default band while from rank 1 
configurable band starts. When the meter measured 
rate is exceed its target rate the packet is processed 
by only one meter band. 
 
4.3.6.3 Counters 
 
It is used to calculate number of packets processed 
by a meter. Different flow entries may use different 
meter, same meter or no meter at all in same flow 
table. With the use of different meters in a flow 
table, Disjoint set of flow entries can be metered 
independently.     

Fig. 4.9 Meters and Hierarchical DSCP metering. 
 

4.3.7 OpenFlow Channel and its Protocol 
 
Each OF switch is connected to the controller 
through an interface called OF channel. It is 
usually encrypted by TLS (Transport Layer 
Security) or SSL to provide secure OpenFlow OF 
channel but can also run directly over TCP. 
Controller uses it for managing and configuring 
switches, receiving events from them, sending 
packet out messages back to the switch etc., and 
the protocol which it uses for this purpose is called 
OF protocol. This protocol describes the massages 

that are exchanged between OF switch and OF 
controller and empowers the controller to direct the 
logical structure of the OF switch.  These messages 
can be categorized into three types. 
  

(i) Controller_to_Switch  
(ii) Asynchronous  
(iii) Symmetric.[20] 

 
4.3.7.1 Controller_to_Switch Messages 
 
These are the messages which are initialized by the 
controller to manage the logical state of the switch 
like configuration, flow table and group table etc. It 
also includes “Packet-Out” messages which are 
sent by the controller to the switch and as a 
response switch will forward the packet to one of 
its output port instead of dropping it. 
 
4.3.7.2Asynchronous Messages 
 
This type of messages is initiated by the switch 
which includes status messages to update the 
controller about the change in the switch state and 
network events. It also includes “Packet-In” 
message which is used by switch to send a packet 
to the OF controller if there is no match found in its 
flow table. 
 
4.3.7.3 Symmetric Messages 
 
These are the messages which can be initiated by 
either controller or the switch e.g. Hello messages 
which is exchanged between switch and controller 
at the time of connection establishment or Echo 
messages which is used to verify that device is 
properly working and to measure latency and 
bandwidth of connection between switch and 
controller. 

 
 
 
 
 
 
 
 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     627 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Table 4.6 OpenFlow Messages 

 
4.4 Benefits of SDN 
 
SDN can be a promising technology for managing 
and providing solutions to various challenges 
encountered in Data center network. Using SDN 
technique administrator of the network do not have 
to implement different protocols and configure 
custom policies on every device in the network, he 
just have to defined all these on the centralized 
location from where all devices are controlled and 
directed by SDN controller. 
 
Data centers are encountering scalability issues 
especially as the number of server and the number 
of VMs (virtual machines) running on them 
increases and later their need for migration (VM 
motion) increases. Virtual machine migration and 
MAC address Table updating requires a high 
bandwidth which increases latency in the network 
and hence decreases overall performance of the 
network and in traditional data center architectures 
user may experience interruption in accessing 
applications. Hence I propose that implementation 
of SDN along with “All optical switching” and 
other virtualization technologies like OTV can 
resolve this issue. AS by implementing SDN and 
All Optical Switching you can dynamically provide 
high bandwidth circuit b/w the two points to 
accommodate such traffic (elephant traffic). 

Whereas different virtualization techniques can be 
implemented as SDN applications like OTV which 
provides you a tunnel to exchange layer 2 traffic 
over the Layer 3  
 
HFPFMAOS 
 
5.1 HFPFMAOS Solution 
 
In this thesis the solution I propose for DCCN 
challenges and issues is HFPFMAOS(Hybrid Flow 
based packet filtering, forwarding & MEMS based 
all optical switching). My proposal implementation 
consists of eight steps. 
 

• Deployment of SDN controller & OF in 
access layer switches i.e. TOR switches 
and their connection with SDN controller 
over SSL. 

• Deployment of MOOOS plane at 
Aggregation level and its connection with 
SDN controller.  

•  Building Topology Database. 
• FPFSF (Flow based Packet Filtering and 

Forwarding). 
• Outgoing Ports monitoring and 

calculation of Links utilization and 
congestion notification to SDN controller 
on reaching specific threshold. 

• Flow Table lookup and Inspection of flow 
entries to identify the flows utilizing more 
bandwidth and notifying that flows source 
and destination.  

• Creation of High bandwidth data paths 
between TOR switches corresponding to 
identified Source and destination  

• Switching of that Specific flows traffic 
through High bandwidth link created 
through MOOOS plane, when that 
specific flow vanishes or come back to its 
normal data rate, switches it back to its 
route and tear down this High bandwidth 
link.  
 

5.1.1 Deployment of SDN controller & OF in 
Access 
 
In first step I will deploy SDN controller and 
enable OF in all access layer switches (TOR) while 
rest of the network remains same i.e. running 
traditional switches. Then I connect every 
OpenFlow OF enabled Access switch with SDN 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     628 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

controller over secure encrypted SSL (secure 
socket layer)/TCP connection. This connection is 
used for communication between SDN controller 
and OF switch through OF protocol. This 
connections is used by SDN controller and various 
north bound applications, like for initial 
handshaking 
messages(OFPT_HELLO,FEATURE_REQUEST_
MESSAGE controller to switch & 
FEATURE_REPLY_MESSAGE from switch to 
controller), Topology discovery using LLDP (Link 
Layer Discovery Protocol)&BDDP (Broadcast 
Domain Discovery Protocol), building data base, 
Alert messages (PACKET IN to controller & 
PACKET OUT message from controller), 
instructions from controller,  building link 
utilization updates, congestion notifications and 
link latency, traffic analyzation for determining 
source and destination of flows utilizing more 
bandwidth, for creation of high bandwidth data 
paths through MEMS switches and modification in 
flow entries of flow table to switch specific flows 
over all optical path between OF switches.  
 
5.1.2 Deployment of MAOS (MEMS based all 
optical switching) Plane 
 
We will deploy MAOS (MEMS based all optical 
switching) plane along with traditional switches at 
aggregation level. In this solution the existing 
packet based switching continue working along 
with newly suggested MAOS for providing 
dynamically high bandwidth data paths between 
servers for switching of elephant traffic whenever 
it is required. Moreover for centralized control, 
management of network elements (NE’s) and 
traffic flow control, it is connected with centralized 
SDN controller. The aim of this deployment is to 
provide dynamically high bandwidth data paths 
b/w the servers along with normal data paths in 
order to support long persistent data flows, which 
results in less chances of bandwidth bottlenecks 
(i.e. point of congestion) as buffers will not 
overflow and data packets of Latency sensitive 
applications keep flowing through the network 
with normal latency. The architecture of my 
proposed solution HPMAOS (Hybrid Packet 
switching and MEMS based all optical switching) 
for DCCN is as shown in fig 5.1  

 
Fig 5.1 Architecture of HPMOOOS for DCCN 

 
In above fig I added a MAOS plane at aggregation 
layer in parallel with Traditional switches where 
OF switches (TOR) are connected simultaneously 
with Aggregation switches and MEMS switches. 
Black lines shows active links of traditional packet 
switched network whereas Orange lines shows 
inactive high bandwidth TORS connections with 
MEMS switches in MAOS Plane to handle long 
persistent data flows.  

 
5.1.3 Building Topology Database 
 
In this solution HFPFMAOS, DCCN will be 
running both OF switches and traditional switches 
along with MEMS Switches i.e. hybrid network 
and employs OF protocol as  South bound Protocol 
between SDN controller and OF switches. SDN 
controller build a topology data base of OF enabled 
devices in the network by discovering OF switches, 
available outgoing links and all the hosts attached 
with each OF switch. This building of topology 
database will involve three discoveries i) discovery 
of Switches ii) Discovery of links iii) Discovery of 
Hosts  
 
5.1.3.1 Discovery of OpenFlow OF Switches 
 
As part of initial configuration like 
“Bootstrapping” every OF enabled switch is 
assigned an IP address and configured with TCP 
port number & one IP address of Master controller 
and a range of IP addresses of slave controllers, as 
in the case of master controller connection failure 
OF switches can connect to slave controller. On 
startup OF switches will establish an encrypted and 
secure connection through TLS with the controller 
and is assigned a specific Switch ID depending 
upon its Pod ID and Rack ID i.e. OS1-1 (O OF, 
S Switch, 1 pod no, -1 Switch no )  and a 
list of outgoing interfaces over which inter-racks, 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     629 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

inter-pod, b/w data centers and end client traffic is 
forwarded. These interfaces also consist of 
interfaces which connects each Access switch to 
MEMS switch, Interface through which OF switch 
is connected with the controller and interfaces to 
which Hosts are connected. 
  
5.1.3.2 Discovery of Active Links 
 
For Links discovery we can employees a OFDP 
(OpenFlow discovery protocol) which leverages L2 
discovery protocol named BDDP (Broadcast 
domain discovery protocol)[22] to find indirect 
available multi-hop links (routes) between 
OpenFlow OF switches. This method is used by 
most famous Open Source controllers like ODL & 
Floodlight etc. This BDDP protocol is similar to L2 
single hop discovery protocol LLDP (Link Layer 
discovery protocol used for discovering direct links 
b/w  OF switches) with the difference in the 
destination MAC address and Ethernet type field 
values. BDDP uses broadcast address 
(ff:ff:ff:ff:ff:ff) in destination MAC address field 
instead of multicast address (01:80:c2:00:00:0e, or 
01:80:c2:00:00:03, or 01:80:c2:00:00:00) used in 
LLDP, and uses Ethertype field value as 0x8999  
instead of 0x88cc in case of LLDP. The frame 
structure of LLDP and BDDP is shown in Fig 5.1 
and Fig 5.2.  

 
 

Fig 5.2 LLDP Frame Structure 

 
Fig 5.3 BDDP Frame Structure 

 
OF controller uses OF protocol and as part of 
initial handshake send 
“OFPT_FEATURES_REQUEST” message to all 
switches to determine its features like identity, 
basic capabilities etc. and Switches in response of 
it send “OFPT_FEATURES_REPLY” message to 
controller. As a result controller gets all the 
information of the OF switches connected in the 

network like Switch ID, a list of active ports 
mapped with their respective MAC addresses in 
their administrative domain. After this the 
controller encapsulates a BDDP packet inside each 
“OFPT_PACKET_OUT” message for every active 
port of Each OF switch accepts the controller port 
as shown in fig 5.3. 

 
Fig 5.4 Links discovery Via OFDP 

 
When OF Switches receives 
“OFPT_PACKET_OUT” messages, they will 
install the flow entries in their flow table and 
forward these BDDP packets through their 
respective ports with broadcast address 
(ff:ff:ff:ff:ff:ff) in the field of destination MAC 
address, Ethertype as 0x8999, TTL value 255, and 
appropriate chassis ID & Port ID indicated in their 
respective TLV fields of the BDDP message 
payload. This BDDP messages reaches to 
traditional switch which sees a broadcast address 
(ff:ff:ff:ff:ff:ff) in the field of destination MAC 
address then it decrement TTL value by 1 and  
immediately flood the packet out of all its ports. 
When these packets reaches to OpenFlow OF 
switches which sees Ethertype as 0x8999 they 
directly forward these packets to controller by 
encapsulating them in “OFPT_PACKET_IN” 
messages as shown in fig 5.5. 
 

 
Fig 5.5 Messages b/w OpenFlow OF switches and controller for Links  
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     630 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

These “OFPT_PACKET_IN” messages include the 
metadata of OpenFlow OF switches (like Port ID, 
Switch ID etc.) where BDDP packets are received. 
These messages are exchanged in one way between 
OpenFlow OF switches and their controller. 
Similarly these massages are exchanged in 
opposite direction as well. After receiving this 
“OFPT_PACKET_IN” messages controller is able 
to discover indirect multi-hop links between 
OpenFlow OF switches based on information 
present in BDDP and metadata and store them in 
their database to build network topology. Most 
important thing controller uses TTL value to count 
no of hops between OpenFlow OF switches. This 
topology discovery process is repeated periodically 
with a default value of 5 seconds. In this whole 
discovery process the total number of 
“OFPT_PACKET_IN” messages received by 
controller is twice the no of active links “L” 
available on the broadcast domain and can be 
calculated as; 
 

TotalRx OFPT_PACKET_IN= 2 x L 
 
The total number of “OFPT_PACKET_OUT” 
messages sent by controller can be calculated as; 
   

TotalTx OFPT_PACKET_OUT= ∑ 𝑃i𝑆
𝑖=0  

 
Where S is no of OpenFlow OF switches each with 
P active ports. In our reference topology there are 4 
OpenFlow OF switches each having 2 active ports 
so total “OFPT_PACKET_OUT” messages sent by 
controller are 2+2+2+2=8. The total number of 
BDDPOFPT_PACKET_OUT messages send by 
controller to a switch can be reduced by adopting 
OFDPv2 [23] in which Port ID TLV field is set to 
0 and will be ignored while in source MAC address 
field MAC address of the port has been set through 
which it is to be sent out. According to OFDPv2 
the number of “OFPT_PACKET_OUT” message 
sent by controller is equal to one per switch and in 
total it is equal to the number of switches which is 
calculated as. 
 

TotalTx OFPT_PACKET_OUT= S 
 
For connectivity with MAOS plane we don’t need 
link discovery as one port of every OpenFlow OF 
switch is physically connected with one port of 
MEMS switch but it becomes active momentarily 
for dynamically creation of paths between any two 
points by the controller, and we will put its all port 

connectivity information and flows entries 
statically in topology database.    

 

 
Switch ID Port

Direct connected Port
MAC address

Far End OSW ID & Port 
Rx “Packet_IN” MSG

Type Status

OSW1-1 Eth 1 SW3 port0 MAC address  OSW1-2, Eth 1 ,1 Dynamic Up

Eth1 SW3 port0 MAC address  OSW2-1, Eth 1 ,3 Dynamic Up

Eth1 SW3 port0 MAC address  OSW2-2, Eth 1 ,3 Dynamic Up

Eth1 SW3 port0 MAC address  OSW1-2, Eth 1 ,3 Dynamic Up

Eth 2 SW4 port0 MAC address OSW1-2, Eth 2 ,1 Dynamic Up

Eth 2 SW4 port0 MAC address OSW2-1, Eth 2 ,3 Dynamic Up

Eth 2 SW4 port0 MAC address OSW2-2, Eth 2 ,3 Dynamic Up

Eth 2 SW4 port0 MAC address OSW1-2, Eth 2 ,3 Dynamic Up

Eth 3 MSW1 port 1 Static Down

Eth 4 Controller Static Up

Eth 5 Down

Eth 6 Down

Eth 7 bb:bb:bb:bb:bb:bb Dynamic Up

Eth 8 aa:aa:aa:aa:aa:aa Dynamic Up

OSW1-2 Eth 1 SW3 port1 MAC address  Dynamic Up

Eth 2 SW4 port1 MAC address Dynamic Up

Eth 3 MSW1 port 1 Static Down

Eth 4 Controller Static Up

Eth 5 Down

Eth 6 Down

Eth 7 cc:cc:cc:cc:cc:cc Dynamic Up

Eth 8 dd:dd:dd:dd:dd:dd Dynamic Up

 Table 5.1 Topology database 
 
 
5.1.3.3 Discovery of Host 
 
For available host discovery attached with the 
OpenFlow OF switches we employees two ways. 
  

(i) Ports for which OpenFlow OF Switches 
do not send “Packet_In” message, is 
marked as Host port during link discover 
as BDDP “Packet_Out” message is sent 
out of all active ports of all switches   

(ii) Host when connect to OpenFlow OF 
Switch send GARP message. 

 
GARP is an advance notification mechanism in a 
broadcast domain to update the controller about 
host discovery and inserting MAC address flow 
entry in the flow table of OpenFlow OF switches 
(same like HSRP & VRRP[24] which uses GARP 
to update the MAC address table of L2 switches), 
update ARP table of other hosts before their ARP 
request, when a new host is connected to a switch 
or a host IP address or MAC address is changed 
due to failover or new NIC in case of VM motion. 
Gratuitous ARP is actually special ARP request 
packets in which both source and destination IP is 
the IP of the source (host) generating the gratuitous 
ARP request, destination MAC address field 
consist of broadcast MAC address 
(ff:ff:ff:ff:ff:ff)[25] and Ethertype field is set to 
0x0806. A GARP request message consist of 
following parameters; 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     631 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

• Destination MAC address: 
FF:FF:FF:FF:FF:FF (broadcast) 

• Source MAC address: Host's MAC 
address 

• Source IP address = Destination IP 
address: IP address of the host sending 
GARP 

• Type: ARP (0x0806) 
• Example of GARP is shown in fig 5.6 

 
Fig 5.6 GARP Request Message 

 
After completing GARP every host will ping each 
other to confirm connectivity and reachability with 
each other. At this moment all hosts have learnt 
each other MAC addresses and their respective IP 
addresses which can be seen from their ARP table 
and after discovery SDN controller suppress link 
discovery on these ports of OpenFlow OF switch to 
which hosts are attached to prevent BDDP packet 
propagation. This suppression is similar to BPDU 
guard security feature in traditional switches which 
prevent BPDU propagation on host connected ports 
enabled with “Portfast” feature [27]. 
 

 
Table 5.2 ARP Table of Host 1connected with OSW1-1 

 

 
Table5.3 ARP Table of Host 2 connected with OSW1-1 
 
5.1.4 Route-Tag assignment to Discovered routes 
& Forwarding Table Buildup 
 
As the controller has a complete road map of all 
the network using a topology discovery and has a 
centralized database, so it has complete 
information about every outgoing interface of 
every OpenFlow(OF) switch and a list of all routes 
and destinaions (MAC/IP addresses) reachable  
through it. After Topology discovery SDN 
controller assign a Route-Tag for each discovered 
route. The main purpose of assigning a Route-Tag 
is to uniquely identify each learned routes and 

build a forwarding table consisting of these Route-
Tag and all the destination (MAC/IP addresses) 
reachable through them. SDN controller install this 
forwarding table into OF switch which lookup this 
table for forwarding a flow towards outgoing 
interface based on Route-Tag. Traditional switches 
forward this Flow frame to the next hop depending 
upon Source addrees and destination address as 
their CAM(content addressable memory) table also 
have list of destination MAC addreses reachable 
across every link(port). When this Flow reaches to 
OpenFlow OF switch it again perform flow tables 
lookup for best match and after matching its 
destination address, forward  this flow to the 
concerned Host port.   
 
5.1.5 Flow Table built-up by inserting Flow 
enteries 
 
When a flow comes to OpenFlow OF switch it 
match each incoming packet against a particular 
flow table or a group of flow tables which consists 
of multiple flow entries and specifies the action to 
be performed on that. This matching can be of any 
type like matching ingress port, Src/Dst MAC 
address, Src/Dst IP address, VLAN ID, TCP/UDP 
Port no etc. Here in this thesis I will use Hybrid 
Model of Flow Table Entries which is a 
combination of both proactive model and reactive 
modal to provide flexibility & support for various 
type of traffic passing through DCCN while 
providing low-latency for delay sensitive traffic. 
For normal traffic like web surfing, data transfer/ 
file transfer, peer to peer traffic I will use Reactive 
model of flow entries while for delay sensitive 
applications that requires low latency like 
audio/video call, live transmissions, banks 
transection data  I will use Proactive model of flow 
entries. When traffic (L1 Flow/L2 Frame/L3 
Pscket/L4 segment or packet etc) comes in the 
OpenFlow OF switch it searches its one or more 
flow tables for matching Source port/ L2 matching 
Src or Dest MAC address/ matching VLAN/ L3 
matching Src or Dest IP address matching / L4 
matching TCPorUDP Port-no respectively as 
shown in fig. 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     632 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
 

Fig 5.7 Anatomy of Flow Table Entry of OpenFlow OF 
 
If it finds any flow entry that matches the fields of 
data traffic then it carry out the action specified by 
the flow entry or it is forwarded to group table to 
carry out multiple actions. Actions can be one or 
multiple which can include sending matching 
packets to the controller, flooding all ports, droping 
the packets, changing multiple header like IP, 
MACS, TCP/UDP ports and Pop, Push, Swap 
MPLS labels.Priority field is also critical as flow 
enteries are sorted out by priorities andin case of  
multiple flow entries matched flow entry with 
highest priority is used and others will be ignored. 
Few common actions are as; 
 

• ALL: forwarding to all interfaces except 
incoming interface. 

• Flood: send packets to all ports except the 
incoming port. 

• Table: Perform actions in the flow table. 
• Normal: Forward using traditional 

Ethernet. 
• Local: send to its local networking stack. 
• Controller: encapsulate packet and send to 

controller. 
 
Moreover both flow table and group table consist 
of counters which is updated upon matching and 
passing of every flow. Counters can be of any type 
i.e. it can be Per Table, per Flow, Per Port or Per 
Que as Shown in table. 
 

 
Table5.4 Types of Counters 

 
In order to avoid conjestion SDN controller will 
continously get the Statistics of outgoing active 
links (Ports) by sending OFPMP_PORT_STATS 
command to OpenFlow OF switch which in reply 
send all the statistics of the requested ports i.e. 
number of Rx_packets, Tx_packets, Rx_bytes, 
Tx_bytes, duration_sec (alive duration), dropped 
packets and Tx/Rx errors. Based on the replied 
statistics controller calculate the link utilization of 
all the desired ports. The formula[28] to calculate 
the Link utilization is as; 

 

 
Fig 5.8 Formula to calculate Link Utilization 

 
Controller maintains a specific link utilization 
threshold for all the outgoing interfaces it crosses 
the specified limit it consult its flowtable to filter 
flows with outgoing interface crossing a specific 
threshold. Out of these flows it check which flow 
have maximum counter value i.e max bytes 
processed  (Received or transmitted) and check that 
flow source and destination address. After 
determination of Source and destination of that 
flow SDN controller will consult its topology 
database to find ports on the source  and 
destination OpenFlow OF switch, and its 
corresponding ports on the MOOOS plane. After 
specifying ports SDN controller then check the 
availability of ports and creates a Highband dat 
pathpath through the MEMS Plane.  
            
In casace of no match then it is a table miss entry 
so as a default action it is Punt to the controller 
which then ïnstruct the switch to perform some 
actions and insert flow entry by sending 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     633 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

“Packet_Out” messages or “Flow_Mod” message. 
“Flow_Mod” message consist of multiple things 
like Buffer ID, Timeout, Actions, Priority etc  Also 
flow entry can be  a permanent or for a specific 
time which is of two types “Idle timeout” and 
“Hard Timeout”. Idle timeout means that’s if there 
is no matching flow entry request in that specific 
time remove the entry and Hard timeout is max 
residing time of  an entry in the flow table no 
matter it is alive matching entry if, Hard timeout is 
deactivated if it is set to 0. For Example in our 
reference topology diagram after host discovery 
through GARP Host 1 send a HTTP request to 
Host2 (say web server), since it is a TCP 
conversation so it starts with SYN message. Host 1 
send a SYN message to OSW1-1 switch, when 
switch receive this packet it check its flow table 
since it is first packet so probably there is no flow 
entry matching with the packet This is called table 
miss flow entry. So as a default action switch punt 
this TCP packet to controller by encapsulating it in 
“Packet_IN” message. This Packet_IN message 
includes complete TCP packet or its Buffer ID ( 
say Buffer ID =250 location where switch buffers 
the entire TCP message). So controller will 
perform couple of actions which may includes 
sending “Packing_Out” message or “Flow_Mod” 
message back to the switch, where “Packet_Out” 
message includes the complete encapsulated TCP 
packet or the reference buffer ID where switch 
stores this packet and instructions from the 
controller to the switch to do with the specific 
packet.In case of “Packet_Out” message controller 
instruct the switch OSW1-1 to simply forward the 
TCP SYNpacket reference with buffer ID=250 out 
of its port8 to Host2. The “Flow_Mod” message 
instruct the switch to install a new flow entry in its 
flow table. The flow entry helps the switch to know 
what to do in future, if similar packet arrives at the 
switch based on matching its fields and masks. 
This message instruct the switch that any TCP 
request from the IP or MAC of Host1 to the IP or 
MAC of Host4, send all to the Port 8. It also 
instruct the switch that TCP message which u 
buffered at BufferID = 250, release that packet 
from buffer and apply the actions in this message 
as well. H4 in reply send a SYN/ACK packet to the 
switch when this messages is received by switch 
then there is no flow entry in the switch from 
Host2 to Host1 so again it is a table miss so switch 
encapsulte this SYN/ACK packet into “Packet_In” 
message and send it to the controller with a 
reference buffer ID (say BufferID=251 . Controller 

in reply send a Packet_Out message and a 
Flow_mod message to the switch which instruct 
the switch to add up a flow entry in the flow table 
and perform some action which is forwarding the 
SYN/ACK message to port7. After all of this rest 
of the conversation between Host1 and Host2 
would not go to the controller as switch have flow 
enteries into the flow table to guide the switch what 
have to do with the packet. Like ACK messages 
and HTTP reply is directly forwarded by the switch 
as shown in below figs5.9 (a ) & (b). 

 
Fig 5.9(a) Open Flow messages for HTTP request 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     634 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Fig 5.9(b) Open Flow messages for HTTP reply 

 
The OF switch flow entries in its flow table will 
look like as shown in Table 5.5. 

I/P
 P

o
rt

Src 
M

A
C

D
st 

M
A

C

V
LA

N
 ID

V
LA

N
 

P
C

P

Eth
e

r_
T

yp
e

SR
C

 IP

D
ST IP

IP
 P

ro
t

IP
 To

S

L4
 SP

o
rt

L4
 

D
P

o
rt

P
rio

rity

A
ctio

n

C
o

u
n

te
r

contr * ff:ff * * 0x8999 * * * * * * 10 Local 11

* * * * * 0x0806 * * * * * * 10 Local 2

* * aa:aa * * * * * * * * * 80 Port 7 50

* * bb:bb * * * * * * * * * 80 Port 8 60

* * dd:dd * * * * * * * * * 80 Port 1,2 60

* * * 10 * * *DST routing 10.0.0.9/8 * * * * 67 Port 1 20

* * * 20 * * *DST routing 10.0.0.16/8 * * * * 67 Port 2 15

* * * * * * * *default route * * * * 50 Contr,Port1 100

Port7 aa:aa bb:bb 20 0 0x0800 10.0.0.1 10.0.0.2 0x06 * 38661 80 67 Port 8 TCP 20

Port8 bb:bb aa:aa 20 0 0x0800 10.0.0.2 10.0.0.1 0x06 * 80 38661 67 Port 7 TCP 20  
Table 5.5 Flow Entries in Flow Table of OF Switch OSW1-1 

 
First entry tells the switch that if any packet comes 
from controller port check its Ether_type if it is 
0x8999 broadcast it out of all the switch ports 
except the port from where it comes as it is BDDP 
message and update the counter. Sec entry tells the 
switch that don’t care all the fields if the 
Ether_type is 0x0806 send it all the switch ports as 
it is GARP request and update the counter . Third, 
forth and fifth line is L2 matching and forwarding 
it tells the switch that if don’t care other fields if 
the packet comes specfied DMAC carry out 
specific action identified by Action field and 
update the counter. Sixth and seventh line tell ip 
routing of packets to specific port depending upon 
its destination IP. Eighth line is the default route 
and last twoflow entries are TCP flow entry of 
HTTP request and reply as shown for our reference 

topology.When the long persistent high bandwidth 
data flow also known as “elephant flow” start 
flowing along with majority of short flows also 
known as “Mouse flows”, this creates point of 
constriction and bandwidth bottleneck on the links 
between the TOR switch and the Aggregation layer 
switch. This High bandwidth data flows which can 
be due to VM motion or data base backup or other 
applications like Hadoop etc. causes the switch 
buffers to overflow as a result switch processes the 
packet slowly which increases network delay and 
badly effect latency sensitive applications. As now 
a days on a server number of virtual machines are 
running for different kind of applications and due 
to some reason one application running on a virtual 
machine in Server Rack 1 start taking high 
resources like bandwidth and CPU etc. effecting 
other applications running on the same server. This 
enforce administrator to move this virtual machine 
to other server with enough resources for this 
application causing VM motion to Server Rack 2 
of same POD, this creates bandwidth bottleneck 
and increases latency on the network links b/w 
server & TOR  switch and Aggregation switch as 
switch buffers starts overflowing and shown in fig 
5.10 

 
Fig 5.10 Data Flow and Links with Congestion 

 
In above fig 5.10 links having red color shows 
congestion on active link of packet switched 
network through which packet trying to traverse. 
Switches notifies about the congestion and 
increased latency in the network to its 
management/controlled plane as shown in fig 5.11 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     635 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Fig 5.11 Switches Notifying about congestion to Control Plane 
 
The management/ Control plane in response 
inspect the packets for determining the source and 
destination of packets flow, consult its topology 
database and identifies the points b/w which high 
bandwidth data paths is required to create. As a 
result Optical control plane notifies the MAOS 
control plane consisting of MEMS based optical 
switches that create the high bandwidth data path 
in parallel with traditional packet switched data 
paths by electrostatically adjusting and 
repositioning micro-mirrors which reflects optical 
beam from the I/P collimator array port to the O/P 
collimator array port of MEMS switches 
corresponding to Source & Destination of data 
flow. Now the elephant data can flow through this 
direct, less delayed and high bandwidth path hence 
relieving the network from congestion and 
improving its latency as shown in fig 5.12. 

 
Fig 5.12High data rate optical path through MEMS switches 

 

In this figure traffic is flowing through both packet 
switched network and also through temporary 
created high bandwidth path represented by Green 
colour through MEMS based switches. When the 
high persistent flow ends up and traffic flow again 
come to its normal level then control plane tear 
down this temporary establised optical path and 
reallocated again when ever and where ever is 
need. 
       
Software Implementation 
 
6.1 Reference Network Topology 
 
For software implementaion of my proposal first I 
considered a reference network topology 
diagramwhich is given as 

 
Fig 6.1 Reference network topology for our simulation test 

 
This reference network topology consist of two 
pods i.e POD 1 and POD2 and each POD suppose 
to be consist of two access switches, two 
aggregation switches and eight hosts or servers. 
POD1 consist of two access (TOR) switches named 
as SW5 & SW6, two aggregation switches named 
as SW3 & SW4 and eight hosts named Host1 to 
Host8 that generates traffic. POD2 also consist of 
two access (TOR) switches named SW9 & SW10, 
two aggregation switches named SW7 & SW8 and 
eight hosts named Host1 to Host8. 
 
6.2 Tools/Software used 
 
The software’s which I used to layout the reference 
network topology and implementing my proposed 
solution named HFPFMAOS (Hybrid Flow based 
packet filtering, Forwarding and MEMS based all 
optical switching) are  

 
• Oracle VM VirtalBox 
• Mininet 
• ODL controller 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     636 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

• Wireshark 
• IPERF 

  
6.3 Preparation of Software 
 
Following steps are required in the preparation of 
this setup are; 
  

• First downloaded and install Oracle VM 
Virtual Box that will run my Mininet 
virtual machine and Open Day Light 
virtual machine. 

• Second make a virtual machine on Virtual 
Box and download the Mininet virtual 
machine image and mount it over this 
newly created virtual machine and install 
Mininet. 

• Third make another virtual machine on 
Virtual Box and download the ODL 
controller setup and install it. 

 
To layout and emulate the reference topology I 
have used the Mininet and its GUI application 
MiniEdit which is running on one virtual machine 
on Virtual Box. To access Mininet over SSH and 
run Miniedit I need X forwarding for which I have 
used Putty and XMing. For Controlling OpenFlow 
virtual switches and MEMS switches I have used 
the external SDN based OpenFlow controller 
which is Open DayLight (ODL Beryllium). I have 
used the IPERF to generate data traffic from 
Hosts/Servers and measuring various performance 
parameters like link bandwidth, network delays etc. 
For capturing data packets and checking different 
protocol messages over various interfaces across 
the network topology I used Wireshark. 

 
Mininet: It is an open source software emulation 
tool for creating various custom topologies with 
number of Hosts/Servers, virtual Switches that can 
support open flow, interconnecting links and SDN 
based OpenFlow controller, all running on a single 
machine. Mininet is a highly flexible Python based 
network emulator that runs over the Linux 
operating system. It allows me greater flexibility to 
create and run various custom topologies, 
Hosts/Servers to send/receive data packets and 
network links with any specified bandwidth, and 
delay etc. 

 

 
Fig 6.2 Mininet 

 
MiniEdit is an application of Mininet which 
empowers you to create and run various custom 
network topologies over Graphical User interface. 
MiniEdit version which I used for creating my 
network topology is '2.2.0.1'. 

 
Fig 6.3 MiniEdit 

 
Open DayLight is also an Open source SDN  
based community project announced in April 2013 
which is aimed to propose and promote SDN based 
North bound API’s (Application program interface) 
and is hosted by LINUX Foundation. It provides 
flexible, pluggable and modular controller platform 
that will increase the adoption of Software defined 
networking techniques. ODL controller is a java 
based software controller which supports Open 
Flow and can be deployed on any OS (Operating 
system) supporting java. It consists of various 
dynamically pluggable modules to carry out 
various according to your requirement. ODL is 
based on web based API named Representational 
State Transfer (REST) and OSGI (Open services 
gateway initiative). It consists of separate plug-Inns 
for supporting different protocols like BGP, 
OpenFlow 1.0, OpenFlow 1.3, etc. at the south 
bound interface which are dynamically connected 
to the SAL (service abstraction Layer) which in 
turn presents the services of North bound modules 
to the physical devices underlying in the topology. 
It is backed by Telecom Industry leading 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     637 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

organizations like, Brocade, Cisco, HP, RedHat, 
IBM, Juniper, VMware and Microsoft etc. Till now 
there are six different releases of ODL controller 
named as Hydrogen, Helium, Lithium, Beryllium, 
Boron, and Carbon. The first one is Hydrogen 
which is launched in Feb 2014 and Carbon is the 
latest which will be launched in June 2017, here in 
this thesis I am using Beryllium which was 
launched in Feb 2016. 

 
Fig 6.4 Open Day Light 

 
IPERF is a test tool that is used to generate 
TCP/UDP traffic between the host and to the 
measure the throughput/bandwidth and quality of 
the available links carrying the network traffic. The 
bandwidth can be measured with an IPERF TCP 
test, whereas the quality of the available links can 
be measured by pinging from one host to another 
host and observing latency (round trip time) and by 
measuring jitter and packet loss from UDP Test. It 
can be easily installed on any LINUX/UNIX or MS 
windows OS. For IPERF testing one host should be 
server and other should be client as shown in fig 

 
Fig 6.5 IPERF 

 
WireShark is a famous Open Source network 
analysis tool that is used to capture real time 
packets for analyzing network protocol and their 
messages and troubleshooting. 
 

 
Fig 6.6 WireShark 

 
6.4 Practical Implementation 
 
The practical implementation of HFPFMAOS is 
done in three steps. 
 
STEP1:Building reference Network topology in 
Mininet with Traditional switches 
 

i. Download & Install Mininet on one 
virtual machine in Virtual Box.  

ii. Download and install putty. 
iii. Start Xming in host operating system for 

X-forwarding. 
iv. Access the Mininet (IP address: 

192.168.56.101) via SSH through putty 
from Host OS.  

v. Run the MiniEdit.py file from Mininet. 
vi. Buildup the reference network topology in 

Miniedit by deploying traditional 
switches. 

vii. Run the topology in Miniedit. 
viii. For loop avoidance bring down the 

redundant links between TOR switches 
and aggregation switches. 

ix. Make three Hosts H1, H3 and H4 as UDP 
streaming servers using IPERF and H11, 
H13, H16 as UDP streaming clients. 

x. Start a ping of 500 Bytes from H13 to H2 
to observe network latency. 

xi. First Generate traffic Between H1 and 
H16 for 120sec and check the network 
performance by observing total data 
transmitted in fixed intervals of 5sec, total 
% of packet loss and observe latency of 
ping. 

xii. After 15 sec generate another traffic 
stream for 120sec Between H3 and H11 in 
parallel with the first one and check the 
network performance & network latency. 

xiii. After 15 sec Generate third traffic stream 
for 120sec Between H4 and H6 in parallel 
with the first one and check the network 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     638 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

performance by observing total data 
transmitted, % of packet loss for each 
stream and net observing network latency 
through ping. 
 

 
Table 6.1 Topology Hypothesis 

 
Fig 6.7 Reference Network topology deployed in Mininet with traditional TOR switches 

 

 
Fig 6.8 UDP traffic generation b/w client H16 and Server H1 

 
Fig 6.9 UDP traffic generation b/w clients H16, H11 and Server H1, H3 

 

 
Fig 6.10 UDP traffic generation b/w clients H16, H11, H6 and Servers H1, H3, H4 

 
STEP2: Replace TOR Traditional switches with 
OF switches  
 
xiv. Download & install SDN ODL controller 

in second virtual machine in Virtual Box.  
xv. Start the ODL controller. 

xvi. Replace the TOR traditional Ethernet 
switches with OF switches in access layer 
and connect them with the remote ODL 
controller over the TCL. 

xvii. Run the topology in miniedit. 
xviii. For loop avoidance bring down the links 

b/w OF switches and aggregation 
switches. 

xix. Add the Flow entries in the flow table of 
OF switches for packets filtering, 
forwarding discovering links and switches 
connected to OF switches.   

xx. Make three Hosts H1, H3 and H4 as UDP 
streaming servers using IPERF and H11, 
H13, H16 as UDP streaming clients. 

xxi. Start a ping of 500 Bytes from H13 to H2 
to observe latency. 

xxii. First Generate traffic Between H1 and 
H16 for 120sec and check the network 
performance by observing total data 
transmitted in fixed intervals of 5sec, total 
% of packet loss and observe latency 
through ping. 

xxiii. After 20 sec generate another traffic 
stream for 120sec Between H3 and H11 in 
parallel with the first one and check the 
network performance & network latency. 

xxiv. After 45 sec Generate third traffic stream 
for 120sec Between H4 and H6 in parallel 
with the first one and check the network 
performance by observing total data 
transmitted, % of packet loss for each 
stream and net observing network latency 
through ping. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     639 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Fig 6.11 Network topology with OF switches in Access as TOR switches 
 
In this topology Host H1~~ H16 are servers 
installed in their respective racks and connected 
each connected with OF switches and Traditional 
switches while C0 is the SDN controller which is 
ODL having IP address 192.168.56.102 and 
connected with each OF switch over standard OF 
port no 6633 via TCP. H1, H2, H3 & H4 are 
considered as servers installed in rack which is 
connected with TOR switch(OSW1-1), andH5, H6, 
H7 & H8 are connected with TOR switch(OSW1-
2), whereas H9, H10, H11& H12 are connected 
with TOR switch(OSW2-1) and H13, H14, H15& 
H16 are connected with TOR switch(OSW2-2). 
Each host from H1~~ H16 is assigned an IP 
address of 10.0.0.1/6 to 10.0.0.16/6 respectively 
whereas each OF switch is also assigned an IP 
address which are OSW1-1=10.0.1.1/16, OSW1-
2=10.0.1.2/16, OSW2-1=10.0.2.1/16, OSW2-
2=10.0.2.2/16. Link between Hosts and OF 
switches is of 4Mb/s with delay of 10msec, 
whereas links between OF switches and traditional 
switches is of 10Mb/s with delay of 5msec and 
between all traditional switches is of 20Mb/s with 
delay of 3msec as shown in below figs. 
  
Host, Nodes, Links and interfaces verification can 
be done by these commands 
 
mininet>nodes 
mininet>net 
mininet>dump 

 
Fig 6.12 Links& Switches created 

 

 
Fig 6.13 Network and Nodes verification 

 
After that I added the flow Entries in the flow table 
of OF switches OSW1-1, OSW1-2, OSW1-3 & 
OSW1-4 for my proposed solution HFPFMAOS 
which are as; 
 
For Host Discovery and ARP Table 
 
mininet>pingall 
 

 
Fig 6.14 Pingall command for All Host Discovery and Reachability 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     640 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Fig 6.15 Host Reachability test via miniedit 

 
For Links Discovery GARP Requests: 
 
mininet>shovs-ofctl add-flow OSW1-1 
dl_type=0x806,nw_proto=1,dl_dst=ff:ff:ff:ff:ff:ff,a
ction=flood 
mininet>shovs-ofctl add-flow OSW1-1 
dl_type=0x806,nw_proto=1,dl_dst=ff:ff:ff:ff:ff:ff,a
ction=flood 
mininet>shovs-ofctl add-flow OSW1-1 
dl_type=0x806,nw_proto=1,dl_dst=ff:ff:ff:ff:ff:ff,a
ction=flood 
mininet>shovs-ofctl add-flow OSW1-1 
dl_type=0x806,nw_proto=1,dl_dst=ff:ff:ff:ff:ff:ff,a
ction=flood 
 
For Links Discovery BDDP Requests: 
 
mininet>shovs-ofctl add-flow OSW1-1 
priority=100,dl_type=0x8999,dl_dst=ff:ff:ff:ff:ff:ff
,action=controller:65535 
mininet>shovs-ofctl add-flow OSW1-2 
priority=100,dl_type=0x8999,dl_dst=ff:ff:ff:ff:ff:ff
,action=controller:65535 
mininet>shovs-ofctl add-flow OSW1-3 
priority=100,dl_type=0x8999,dl_dst=ff:ff:ff:ff:ff:ff
,action=controller:65535 
mininet>shovs-ofctl add-flow OSW1-4 
priority=100,dl_type=0x8999,dl_dst=ff:ff:ff:ff:ff:ff
,action=controller:65535 
 
For Enable Layer 2 Forwarding  
 
mininet>sh ovs-ofct1 add-flow OSW1-1 
action=normal  
mininet>sh ovs-ofct1 add-flow OSW1-2 
action=normal 
mininet>sh ovs-ofct1 add-flow OSW2-1 
action=normal  

mininet>sh ovs-ofct1 add-flow OSW2-2 
action=normal 
 
ARP Table of Hosts 
 

 
Fig 6.16ARP table entries of Hosts 

 
Wireshark OpenFlow messages b/w OSW & C0 
 

 
Fig 6.17OpenFlow “Packet_in” message to C0 

 

 
Fig 6.18 OpenFlow “Packet_out” message from C0 

 

 
Fig 6.19 OpenFlow messages between OSW & C0 

 
 
OpenDay Light controller GUI screen Shots: 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     641 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 

 
Fig 6.20 Hosts and Openflow Switches discovery in ODLN/W topology DB 

 

 
Fig 6.21 Openflow Switches and its connected interfaces in ODL 

 

 
Fig 6.22 OSW11and its connected interfaces 

 

 
Fig 6.23 OSW12and its connected interfaces 

 
Fig 6.24 OSW21and its connected interfaces 

 

 
Fig 6.25 OSW22and its connected interfaces 

 
Traffic Generation by Iperf 
 

 
Fig 6.26 Traffic Generation and Latency (Delay) 

 
For traffic generation I made H1, H3 and H4 as 
IPERF servers and H16, H11 and H6 as their 
corresponding clients. Traffic generation from 
clients H16,H11 and H6 is done in three phases 
and analyze the network topology performance at 
each step by checking the bandwidth, packet loss 
and latency through ping of 500Bytes between 
Hosts H2 and H13. 
 
In first phase 4Mbps UDP data stream is generated 
for a period of 120sec from clientH16 over a UDP 
port 5566 which is received on the server H1 over 
the corresponding port, then I checked the amount 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     642 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

of data transferred data during 5sec interval is 
2.32MBytes and percentage of packet loss which is 
0% throughout mean while also check the ping 
delay between H2 and H13 which is around 83ms 
as can be observed in below figure6.23. 
 

 
Fig 6.27 UDP traffic generation b/w client H16 and Server H1 
 
In second phase after 20seconds another 4Mbps 
UDP data stream is generated for a period of 
120Sec from client H11 over a UDP port 5567that 
received on the server H3 over the corresponding 
port, then I checked the amount of data transferred 
during 5sec interval and percentage of packet loss 
for each transfer meanwhile also check the effect 
on ping delay between H2 and H13 as now total 
link utilization of the link between OSW11 and S9 
is now reached to 80% of available bandwidth. 
After 20 sec when second data stream is started 
then H3 server keep receiving 2.32Mbytes with no 
packet loss while there is a significant reduction in 
amount of data received by the H1 which is 
1.16MB and 1.57MB during 20-30 sec and there is 
a packet loss as well which is around 26% which is 
due to buffering limitation, also meanwhile the 
ping delay also enhanced till 99.7msec from 
83msec. But it becomes normal and settles for next 
interval30-35secwhich can be observed in below 
figure 6.24. 

 
Fig 6.28 UDP traffic generation b/w clients H16, H11 and Server 

H1,H3 
 
In Third phase again after few seconds another 
4Mbps UDP data stream is generated for a period 

of 120secfrom client H6 over a UDP port 5568that 
received on the server H4 over the corresponding 
port. This stream created the congestion over the 
link between OSW11 and the S9 switch as now the 
total data transfer rate through this leg is exceed 
then the total bandwidth. I checked the amount of 
data transferred during 5sec interval and 
percentage of packet loss for each transfer and 
found that there is a significant amount of 
reduction in total amount of data transferred during 
5 sec intervals for each stream and also there is 
huge percentage of data loss as well in each stream, 
meanwhile ping delay between H2 and H13 also 
increases drastically to 1283ms from just 
83mswhich can be seen in below figure 6.25. 
 

 
Fig 6.29 UDP traffic generation b/w clients H16, H11, H6 and Server H1, H3, H4 

 
STEP3: Network topology in Mininet with 
MEMS 
 
In second step to deploy the concept of MEMS 
switching I add up another Openflow switch named 
MEMSW1 in aggregation layer along with 
traditional switches and connect it with OF 
switches(TOR). To introduce the concept of 
MEMSI let the links bandwidth with MEMSW1 
too high i.e. 1000Mb/s and delay is 1msec. To 
show all optical switching I make the buffer size 
and throughput (speedup) of the links equal to 
bandwidth of the link i.e. 1000Mb/s. 
For Step 2 procedure is as; 
  

i. Repeat all procedure from i) to viii) 
described in step 1 with addition of 
MEMSW1 and its links during topology 
creation. 

ii. Add the Flow entries in the flow table of 
OF switches in such a way that normally 
all data between different legs will 
traverse through traditional switches and 
bypass/avoid MEMSW1.  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     643 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

iii. Make three Hosts H1, H3 and H4 as UDP 
streaming servers using IPERF and H11, 
H13, H16 as UDP streaming clients. 

iv. Start a ping of 500 Bytes from H13 to H2 
to observe latency.  

v. First Generate traffic Between H1 and 
H16 for 120sec and check the network 
performance by observing total data 
transmitted in fixed intervals of 5sec, total 
% of packet loss and observe latency 
through ping. 

vi. After 20 sec generate another traffic 
stream for 120sec Between H3 and H11 in 
parallel with the first one and check the 
network performance & network latency. 

vii. ODL controller will keep monitoring link 
utilization of interface b/w OSW11 and 
S9 when it reaches 80% of its utilization it 
will pass the next stream through 
MEMSW1. 

viii. After 45 sec Generate third traffic stream 
for 120sec Between H4 and H6 in parallel 
with the first one and check the network 
performance by observing total data 
transmitted, % of packet loss for first two 
streams and observing network latency 
through ping. Moreover also check the 
total bytes transmitted and latency for 
third stream passing through MEMSW1. 

 
Fig 6.30 Network Topology with MEMS 

 
Fig 6.31 Links& Switches created with MEMSW 

 

 
Fig 6.32 Network and Nodes verification 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     644 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

Fig 6.33 ODL Open Flow switches discovery with MEMSW1 

 
Fig 6.34 ODL Hosts and Open Flow switches discovery with MEMSW1 

 

 
Fig 6.35 ODL OF nodes with no of connected interfaces 

 

 
Fig 6.36 ODL MEMSW1 connected interfaces flow statistics 

 
Fig 6.37 ODL OSW11 connected interfaces flow statistics 

 
Fig 6.38 ODL OSW22 connected interfaces flow statistics 

  

 
Fig 6.39 UDP traffic b/w H16, H11 & H1, H3 and Ping delay b/w H13 & H2. 

 

In above fig we can observe that total bandwidth 
utilized by UDP traffic between H16 & H1 and 
H11& H3 is around 8Mbits/sec which is 
approximately equal to 80% of total available band 
width through OSW11. In this fig there is also a 
ping of 508bytes between H13 & H2 which 
follows a normal path having a delay of around 
82msec while there is another ping between H6 & 
H4 which is through MEMSW1 having a delay of 
47msec which is very less than normal ping delay 
and approx. 90% of this delay is due to link delay 
between Host and OSW switches. In above fig first 
I generated 4Mb/sec UDP stream between H16 & 
H1 and after 20sec generate another stream 
between H11 & H3 and observe there is no much 
effect on delay in ping between H13 & H2 and also 
there is no packet loss in either stream. As till now 
the total outgoing link utilization from OSW11 
reaches to almost 80% so next stream which I will 
generate will be between H4 & H6 and is also of 
4Mb/sec, so we pass that through MEMS layer (i.e. 
through MEMSW1) as shown in Fig 6.40.  
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     645 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

 
Fig 6.40 UDP traffic through MEMSW1 b/w H4 & H6 and Ping delay. 

In above figure 6.40 we can see that the generation 
of third stream between H4 & H6 has no effect on 
other streams and there is no packet loss in either 
stream. As the third stream is passing through 
MEMS and does not follow the route as first two 
streams was following. 
 
6.5 Simulation Results Summary, Comparison & 
Analysis:  
 
The simulation results of all three data forwarding 
techniques Ethernet Switching, HFPF & 
HFPFMOAS is summarized in the below Table. 
 

Bytes Received 
(5 sec) Bandwidth Datagrams 

Lost
Bytes Received 

(5 sec) Bandwidth Datagrams 
Lost

Bytes Received 
(5 sec) Bandwidth

First stream 2.32MBytes 3.89Mbps 0% 0  0 0
Sec stream started 794Kbytes 1.30Mbps 56% 2.32MBytes 3.89Mbps 0% 0

After 10 sec Two streams 2.32MBytes 3.89Mbps 0% 2.32MBytes 3.89Mbps 0% 0
Third Stream 1.60MBytes 2.69Mbps 48% 2.32MBytes 3.89Mbps 7% 2.21MBytes 3.71Mbps
First stream 2.32MBytes 3.89Mbps 0% 0  0 0

Sec stream started 1.57Mbytes 2.63Mbps 26% 2.32MBytes 3.89Mbps 0% 0
Two streams 2.32MBytes 3.89Mbps 0% 2.32MBytes 3.89Mbps 0% 0
Third Stream 1.57MBytes 2.64Mbps 35% 1.52MBytes 2.56Mbps 13% 2.09MBytes 3.5Mbps
First stream 2.32MBytes 3.89Mbps 0% 0  0 0

Sec stream started 2.30Kbytes 3.87Mbps 0% 2.32MBytes 3.89Mbps 0% 0
Two streams 2.32MBytes 3.89Mbps 0% 2.32MBytes 3.89Mbps 0% 0
Third Stream 2.32MBytes 3.89Mbps 0% 2.32MBytes 3.89Mbps 0% 2.32MBytes 3.89Mbps

Three Data Forwarding Tecqniques Comparison

Ethernet 
Switching

HFPF

HFPFMAOS

 H16 (Client)  ---> H1 (Server)  H11 (Client) ---> H3 (Server)  H6 (Client) ---> H4 (Serv
 4Mbps UDP traffic generated from Sources (Clients) to Destinations (Servers) with a 2.38MBytes tranferred in 5se   Data packets 

Forwarding 
Technology / 

Topology

Data Stream 
Sequence

 
Table 6.2 Simulations Results summary 

 

From above summary table it can be observed that 
using traditional switches when second data stream 
is generated, initially there is a no of datagrams lost 
and there is dropage in Bytes received as well for 
few seconds who vanished after. But when third 
stream is generated the network delay drastically 
increases due to congestion and there is a 
continuous dropage of data packets in all streams. 
However using HFPF there is some improvement 
in the percentage of lost datagrams and number of 
bytes received during 5 sec interval when second 
and Third data stream is generated. But by the 
addition of MOAS plane with HFPF there is a 
significant amount of improvement in network 
delay at each step of data stream generation, also 
now there is no loss of datagrams as well. Hence 
this show that HFPFMOAS can be very beneficial 

for improving network performance and congestion 
issues in data center communication network. 
 
6.6 Code for Topology Creation: 
 
#!/usr/bin/python 
from mininet.net import Mininet 
frommininet.node import Controller, 
RemoteController, OVSController 
frommininet.node import CPULimitedHost, Host, 
Node 
frommininet.node import OVSKernelSwitch, 
UserSwitch 
frommininet.node import IVSSwitch 
frommininet.cli import CLI 
from mininet.log import setLogLevel, info 
frommininet.link import TCLink, Intf 
fromsubprocess import call 
 
defmyNetwork(): 
 
net = Mininet( topo=None, 
build=False, 
ipBase='10.0.0.0/8') 
 
info( '*** Adding controller\n' ) 
    c0=net.addController(name='c0', 
controller=RemoteController, 
ip='192.168.56.102', 
protocol='tcp', 
port=6633) 
 
info( '*** Add switches\n') 
    s5 = net.addSwitch('s5', cls=OVSKernelSwitch, 
failMode='standalone') 
    OSW2-2 = net.addSwitch('OSW2-2', 
cls=OVSKernelSwitch) 
    OSW1-2 = net.addSwitch('OSW1-2', 
cls=OVSKernelSwitch) 
    s7 = net.addSwitch('s7', cls=OVSKernelSwitch, 
failMode='standalone') 
    s16 = net.addSwitch('s16', 
cls=OVSKernelSwitch, failMode='standalone') 
    s10 = net.addSwitch('s10', 
cls=OVSKernelSwitch, failMode='standalone') 
    s15 = net.addSwitch('s15', 
cls=OVSKernelSwitch, failMode='standalone') 
    s9 = net.addSwitch('s9', cls=OVSKernelSwitch, 
failMode='standalone') 
    s8 = net.addSwitch('s8', cls=OVSKernelSwitch, 
failMode='standalone') 
    OSW1-1 = net.addSwitch('OSW1-1', 
cls=OVSKernelSwitch) 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     646 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

    OSW2-1 = net.addSwitch('OSW2-1', 
cls=OVSKernelSwitch) 
 
info( '*** Add hosts\n') 
    H3 = net.addHost('H3', cls=Host, ip='10.0.0.3', 
defaultRoute=None) 
    H16 = net.addHost('H16', cls=Host, 
ip='10.0.0.16', defaultRoute=None) 
    H14 = net.addHost('H14', cls=Host, 
ip='10.0.0.14', defaultRoute=None) 
    H10 = net.addHost('H10', cls=Host, 
ip='10.0.0.10', defaultRoute=None) 
    H6 = net.addHost('H6', cls=Host, ip='10.0.0.6', 
defaultRoute=None) 
    H13 = net.addHost('H13', cls=Host, 
ip='10.0.0.13', defaultRoute=None) 
    H11 = net.addHost('H11', cls=Host, 
ip='10.0.0.11', defaultRoute=None) 
    H7 = net.addHost('H7', cls=Host, ip='10.0.0.7', 
defaultRoute=None) 
    H8 = net.addHost('H8', cls=Host, ip='10.0.0.8', 
defaultRoute=None) 
    H4 = net.addHost('H4', cls=Host, ip='10.0.0.4', 
defaultRoute=None) 
    H12 = net.addHost('H12', cls=Host, 
ip='10.0.0.12', defaultRoute=None) 
    H5 = net.addHost('H5', cls=Host, ip='10.0.0.5', 
defaultRoute=None) 
    H9 = net.addHost('H9', cls=Host, ip='10.0.0.9', 
defaultRoute=None) 
    H15 = net.addHost('H15', cls=Host, 
ip='10.0.0.15', defaultRoute=None) 
    H2 = net.addHost('H2', cls=Host, ip='10.0.0.2', 
defaultRoute=None) 
    H1 = net.addHost('H1', cls=Host, ip='10.0.0.1', 
defaultRoute=None) 
 
info( '*** Add links\n') 
    OSW1-1H1 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW1-1, H1, cls=TCLink , **OSW1-
1H1) 
    OSW1-1H2 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW1-1, H2, cls=TCLink , **OSW1-
1H2) 
    OSW1-1H3 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW1-1, H3, cls=TCLink , **OSW1-
1H3) 
    OSW1-1H4 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW1-1, H4, cls=TCLink , **OSW1-
1H4) 
    OSW1-2H5 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW1-2, H5, cls=TCLink , **OSW1-
2H5) 

    OSW1-2H6 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW1-2, H6, cls=TCLink , **OSW1-
2H6) 
    OSW1-2H7 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW1-2, H7, cls=TCLink , **OSW1-
2H7) 
    OSW1-2H8 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW1-2, H8, cls=TCLink , **OSW1-
2H8) 
    OSW2-1h9 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW2-1, h9, cls=TCLink , **OSW2-
1h9) 
    OSW2-1h10 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW2-1, h10, cls=TCLink , 
**OSW2-1h10) 
    OSW2-1h11 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW2-1, h11, cls=TCLink , 
**OSW2-1h11) 
    OSW2-1h12 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW2-1, h12, cls=TCLink , 
**OSW2-1h12) 
    OSW2-2h13 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW2-2, h13, cls=TCLink , 
**OSW2-2h13) 
    OSW2-2h14 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW2-2, h14, cls=TCLink , 
**OSW2-2h14) 
    OSW2-2h15 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW2-2, h15, cls=TCLink , 
**OSW2-2h15) 
    OSW2-2h16 = {'bw':4,'delay':'10ms','loss':0} 
net.addLink(OSW2-2, h16, cls=TCLink , 
**OSW2-2h16) 
s16OSW2-2 = {'bw':10,'delay':'5ms','loss':0} 
net.addLink(s16, OSW2-2, cls=TCLink , 
**s16OSW2-2) 
s10OSW2-1 = {'bw':10,'delay':'5ms','loss':0} 
net.addLink(s10, OSW2-1, cls=TCLink , 
**s10OSW2-1) 
s15OSW1-2 = {'bw':10,'delay':'5ms','loss':0} 
net.addLink(s15, OSW1-2, cls=TCLink , 
**s15OSW1-2) 
s9OSW1-1 = {'bw':10,'delay':'5ms','loss':0} 
net.addLink(s9, OSW1-1, cls=TCLink , 
**s9OSW1-1) 
    s9s7 = {'bw':20,'delay':'3ms','loss':0} 
net.addLink(s9, s7, cls=TCLink , **s9s7) 
    s7s15 = {'bw':20,'delay':'3ms','loss':0} 
net.addLink(s7, s15, cls=TCLink , **s7s15) 
    s8s10 = {'bw':20,'delay':'3ms','loss':0} 
net.addLink(s8, s10, cls=TCLink , **s8s10) 
    s8s16 = {'bw':20,'delay':'3ms','loss':0} 
net.addLink(s8, s16, cls=TCLink , **s8s16) 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     647 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

    s7s8 = {'bw':20,'delay':'3ms','loss':0} 
net.addLink(s7, s8, cls=TCLink , **s7s8) 
    OSW1-1s15 = {'bw':10,'delay':'5ms','loss':0} 
net.addLink(OSW1-1, s15, cls=TCLink , 
**OSW1-1s15) 
s9OSW1-2 = {'bw':10,'delay':'5ms','loss':0} 
net.addLink(s9, OSW1-2, cls=TCLink , 
**s9OSW1-2) 
s10OSW2-2 = {'bw':10,'delay':'5ms','loss':0} 
net.addLink(s10, OSW2-2, cls=TCLink , 
**s10OSW2-2) 
    OSW2-1s16 = {'bw':10,'delay':'5ms','loss':0} 
net.addLink(OSW2-1, s16, cls=TCLink , 
**OSW2-1s16) 
    OSW1-1s5 = 
{'bw':10000,'delay':'1ms','loss':0,'max_queue_size':
10000,'speedup':10000} 
net.addLink(OSW1-1, s5, cls=TCLink , **OSW1-
1s5) 
    OSW1-2s5 = 
{'bw':10000,'delay':'1ms','loss':0,'max_queue_size':
10000,'speedup':10000} 
net.addLink(OSW1-2, s5, cls=TCLink , **OSW1-
2s5) 
s5OSW2-1 = 
{'bw':10000,'delay':'1ms','loss':0,'max_queue_size':
10000,'speedup':10000} 
net.addLink(s5, OSW2-1, cls=TCLink , 
**s5OSW2-1) 
    OSW2-2s5 = 
{'bw':10000,'delay':'1ms','loss':0,'max_queue_size':
10000,'speedup':10000} 
net.addLink(OSW2-2, s5, cls=TCLink , **OSW2-
2s5) 
 
info( '*** Starting network\n') 
net.build() 
info( '*** Starting controllers\n') 
for controller in net.controllers: 
controller.start() 
 
info( '*** Starting switches\n') 
net.get('s5').start([]) 
net.get('OSW2-2').start([c0]) 
net.get('OSW1-2').start([c0]) 
net.get('s7').start([]) 
net.get('s16').start([]) 
net.get('s10').start([]) 
net.get('s15').start([]) 
net.get('s9').start([]) 
net.get('s8').start([]) 
net.get('OSW1-1').start([c0]) 
net.get('OSW2-1').start([c0]) 

 
info( '*** Post configure switches and hosts\n') 
    OSW2-2.cmd('ifconfig OSW2-2 10.1.2-2') 
    OSW1-2.cmd('ifconfig OSW1-2 10.1.1.2/16') 
    OSW1-1.cmd('ifconfig OSW1-1 10.1.1.1/16') 
    OSW2-1.cmd('ifconfig OSW2-1 10.1.2.1/16') 
print "Dumping host connections"  
dumpNodeConnections(net.hosts)  
print "Testing network connectivity"  
 
    #defperfTest():  
 
    # if user test argument is active then pick the 
correct test  
 
net.pingAll() 
net.pingAll() 
print("Test bandwidth b/w H1 and H2..............." ); 
    #H1, H2 = net.get('H1', 'H2')  
    #net.iperf((H1, H2)  
 
    #print ("Test bandwidth b/w H1 and 
H6..............." ); 
    H1, H6 = net.get('H1', 'H6')  
net.iperf((H1, H6))  
 
    #print( "Test bandwidth b/w H1 and 
H10..............." ); 
 H1, H10 = net.get('H1', 'H10')  
net.iperf((H1, H10))  
 
    #print( "Test bandwidth b/w H1 and 
H15..............." ); 
    H1, H15 = net.get('H1', 'H15')  
net.iperf((H1, H15))  
 
    # also argument for generating traffic  
 
    # arugment for stat analysis  
 
CLI(net) 
net.stop() 
 
if __name__ == '__main__': 
setLogLevel( 'info' ) 
myNetwork() 
 
Conclusion and Future Work 
 
7.1 Conclusion 
 
In this research work, I successfully implemented 
my proposed solution named HFPFMAOS (Hybrid 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     648 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

Flow based packet filtering, Forwarding and 
MEMS based all optical switching) using 
OpenFlow tools like Mininet, OpenDayLight SDN 
controller and IPERF. This solution is very helpful 
inefficiently utilizing data center network resources 
by managing East-West data center traffic and 
supporting a variety of traffic patterns (i.e. mouse 
flows and Elephant flows) which will eventually 
reduce congestion and improves network latency in 
the traditional data center communication network. 
This solution modifies the traditional data center 
network architecture in such a way that it will 
resolve most of its challenges with little 
modification in low CAPEX keeping its current 
infrastructure. It leverages the concept of SDN by 
employing OF switches in Access and MEMS in 
aggregation which enables you to control East-
West data flows between servers and create 
dynamically very high bandwidth data paths 
between TOR OF switches (Access layer) to avoid 
congestion, ease traffic flows and maintain QOS 
throughout its network. As SDN is an emerging 
technology which is becoming popular very rapidly 
and adoptable due to its flexibility and great 
potential and this solution also employees it so it 
can be very helpful to meet current and future 
challenges which traditional or current data centers 
are facing. Secondly this solution employee MEM 
switching which is already matured and deployed 
in optical backbone transport network equipment’s 
like DWDM  for switching of extremely high data 
rates, so using MEMS switches at aggregation 
layer which can create dynamically very high 
bandwidth optical paths of any data rate between 
any TOR switches which can solve many issues 
like scalability issue. So this solution with a blend 
of MEM switching and SDN can be very beneficial 
in meeting current and future requirements of data 
center communication network. 
  
7.2 Future Enhancement 
 
As a future enhancement we can employee Multi-
pathing and dynamic load balancing over its links 
between OF switches and traditional switches as 
here for loop avoidance I intentionally make the 
sec link down. Secondly we can test this idea by 
implementing it on other data center topology 
architecture and check its performance for the 
deployment of new data centers build up. Thirdly 
we can employ automatic switching of data flows 
utilizing high bandwidth over the MEMS path or of 

new flows in case the utilization of available 
bandwidth reached to 80% of total bandwidth. 
 
References 
 
[1] Cisco Global Cloud Index: 

https://cisco.com/c/en/us/solutions/collater
al/ service-provider/global-cloud-index-
gci/Cloud_Index_White_Paper.pdf 

[2] https://www.cisco.com/c/dam/m/en_us/ser
vice-
provider/ciscoknowledgenetwork/files 
/547_11_10-15-
DocumentsCisco_GCI_Deck_2014- 
2019_for_CKN_10NOV2015 _.pdf  

[3] eBook: Cisco Data-center-virtualization-
fundamentals-understanding-
9781587143243 

[4] http://www.graybar.com/applications/data
-centers/types 

[5] http://www.buusinessn 
ewsdaily.com/4982-cloud-vs-data-
center.html 

[6] http://www.cyberciti.biz/faq/data-center-
standard-overview/ 

[7] http://www.graybar.com/applications/data
-centers/tiers 

[8] https://www.microsoft.com/en-
us/research/publication/the-cost-of-a-
cloud-research-problems-in-data-center-
networks/. 

[9] Data center Load balancing data center 
services: 
https://learningnetwork.cisco.com/docs/ 
DOC-3438 

[10] http://research.microsoft.com/en-
us/um/people/dmaltz/papers/DC-Costs-
CCR-editorial.pdf 

[11] M. Al-Fares, A. Loukissas, and A. Vahdat, 
Fat Tree: “A scalable, commodity 
datacenter network architecture,” in ACM 
SIGCOMM. 

[12] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, 
Y. Shi, C. Tian, Y. Zhang, and S. Lu, 
“BCube: a high performance, server-
centric network architecture for modular 
data centers,” in ACM SIGCOMM. 

[13] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, 
and S. Lu, “DCell: A scalable and fault-
tolerant network structure for data 
centers,” in ACM SIGCOMM.  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017                                                     649 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org 

[14] “VL2: A Scalable and Flexible Data 
Center Network” 
https://pdfs.semanticscholar. 
org/74a2/0105bca9430c41fd67cec635445
b734961eb.pdf  

[15] “3D MEMS Optical switch with toroidal 
concave mirror” https://www.ntt-review.jp 

[16] “High-yield Fabrication Methods for 
MEMS Tilt Mirror Array for Optical 
Switches” by Joji Yamaguchi †, Tomomi 
Sakata, NobuhiroShimoyama, 
https://www.ntt-review.jp 

[17] “State of the Art of Optical Switching 
Technology for All-Optical Networks” 
http://home.deib.polimi.it/   

[18]  “Comparison between Optical Switching 
Technologies” http://mapyourtech.com  

[19] https://www.sdxcentral.com/wp-
content/uploads/2015/11/2015_SDxCentra
l_-SDN_Controllers-
Report_Cisco_FINAL.pdf 

[20] http://www.opendaylight.org/project/techn
ical-overview 

[21] “HP OpenFlow Protocol Overview” 
http://www1.hpe.com 

[22] http://www.cisco.com/c/en/us/about/press/
internet-protocol-journal/back-
issues/table-contents-59/161-sdn.html 

[23] “Software-Defined Networking: State of 
the Art and Research Challenges” https:// 
arxiv.org 
/ftp/arxiv/papers/1406/1406.0124.pdf 

[24] “Current Trends of Discovery Topology in 
OpenFlow-based Software Defined 
Networks” by L Ochoa Aday -  2015 
http://upcommons.upc.edu/ 

[25] “Efficient Topology Discovery in 
Software Defined Networks” 
https://www.research gate.net/  

[26] http://networkengineering.stackexchange.c
om/questions/7713/how-does-gratuitous-
arp-work. 

[27] “Gratuitous ARP” 
https://learningnetwork.cisco.com 

[28] https://live.paloaltonetworks.com/t5/Mana
gement-Articles/Trigger-a-Gratuitous-
ARP-GARP-from-a-Palo-Alto-Networks-
Device/ta-p/61962 

[29] Poisoning Network Visibility in Software-
Defined Networks: New Attacks and 
Countermeasures 
http://www.internetsociety.org/sites/defaul
t/files/10_4_2.pdf 

[30]  “Calculate Bandwidth Utilization” 
http://www.cisco.com/  

[31] “MEMS Micro electromechanical 
systems”  
”http://internetofthingsagenda.techtarget. 
com/definition 

[32] https://www.opennetworking.org/images/s
tories/downloads/sdn-resources/onf-
specifications/OpenFlow OF/OpenFlow 
OF-switch-v1.3.1.pdf 

[33]  https://www.mininet.org 
 

IJSER

http://www.ijser.org/

	1.1 Background
	1.2 Problem Statement
	1.3 Research Contribution
	1.4 Research Methodology
	Data Center
	2.1 Introduction
	2.2 Evolution of Data Center
	2.3 Types of Data Centers
	2.4 Attributes of Data Center Communication Network (DCCN)
	2.5 Data Center Tiers
	2.6 Design Factors for Data Center Network
	2.7 Challenges for DCCN
	2.8 DCCN Topologies
	2.8.1 Fat-Tree
	2.8.2 BCube
	2.8.3 DCell
	2.8.4VL2
	2.8.5 HFPFMAOS

	MAOS (MEMS all Optical Switching)
	3.1 Introduction
	3.2 OOO Switching (All Optical)
	3.3 Benefits of OOO Switching
	3.4 Applications of OOO Switching
	3.5OOO Switching Technologies
	3.6 Micro Electro Mechanical Systems (MEMS)
	3.7 Design and Principle
	3.8 MEMS Mirror Structure
	3.8.1 Mirror Substrate
	3.8.1.1 Fabrication Method of Mirror Electrode Substrate
	3.8.2 Driving Electrode Substrate
	3.8.2.1 Fabrication of Driving Electrode Substrate
	3.9 MEMS Mirror Motion
	3.10 Key Advantages of MEMS Switches in DCCN

	SDN
	4.1 Introduction
	SDN stands for Software Defined networking. It is an emerging architecture that can be adaptable for designing and managing networks like DCCN (Data Center communication Network), CAN (campus area network) and service provider networks (ISP’s) due to its dynamic approach, cost-effectiveness and manageability. The main objective of this architecture is to separate the control plane of the devices from its data/forwarding plane while provisioning programmability of its control plane. It presents a solution for controlling network and its management by centralizing and aggregating the control plane intelligence of the entire network infrastructure keeping its forwarding/data plane separate from it. Hence the network devices intact their data plane (switching fabric) but hand over their intelligence & control (routing, switching and forwarding decisions) to the controller which is a commodity server running NOS (network operating system). This allows the network administrator to dynamically configure and control the network devices through the applications programmed at the top of SDN architecture and makes the network highly flexible and easily manageable.
	4.2 SDN Architecture
	4.2.1 Application Layer
	4.2.2 Controller or Control Plane
	4.2.3 Data Plane
	4.2.4 North Bound API’s
	4.2.5 South Bound API’s
	4.2.6 East-West Protocols

	4.3 Open Flow (OF)
	4.3.1 Open Flow-Only Switches
	4.3.2 OpenFlow-Hybrid switches
	4.3.3 OpenFlow (OF) Architecture
	4.3.4 Flow Table
	4.3.4.1 Match ﬁelds
	4.3.4.2 Priority
	4.3.4.3 Counters
	4.3.4.4 Instructions
	4.3.4.5 Timeouts
	4.3.4.6 Cookie
	4.3.5 Group Table
	4.3.5.1 Group identiﬁer
	4.3.5.2 Group type
	4.3.5.3 Counters
	4.3.5.4 Action buckets
	4.3.6 Meter Table
	4.3.6.1 Meter Identifier  
	4.3.6.2 Meter Bands
	4.3.6.2.1 Band Type
	4.3.6.2.2 Rate
	4.3.6.2.3 Burst
	4.3.6.2.4 Counters
	4.3.6.2.5 Type speciﬁc arguments
	4.3.6.3 Counters
	4.3.7 OpenFlow Channel and its Protocol
	4.3.7.1 Controller_to_Switch Messages
	4.3.7.2Asynchronous Messages
	4.3.7.3 Symmetric Messages
	4.4 Benefits of SDN

	HFPFMAOS
	5.1 HFPFMAOS Solution
	5.1.1 Deployment of SDN controller & OF in Access
	5.1.2 Deployment of MAOS (MEMS based all optical switching) Plane
	5.1.3 Building Topology Database
	5.1.3.1 Discovery of OpenFlow OF Switches
	5.1.3.2 Discovery of Active Links
	5.1.3.3 Discovery of Host
	5.1.4 Route-Tag assignment to Discovered routes & Forwarding Table Buildup
	5.1.5 Flow Table built-up by inserting Flow enteries

	Software Implementation
	6.1 Reference Network Topology
	6.2 Tools/Software used
	6.3 Preparation of Software
	6.4 Practical Implementation

	Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Enhancement




